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Introduction

The ALIFE 2021 Organizing Committee invited all students to take part in the
ALIFE 2021 Student Essay Competition. This competition was open to both
non-PhD and PhD students. Students from any discipline were welcome to
submit an essay. This ALIFE 2021 student essay competition had very simple
rules. Students should write an essay of 1,500 to 2,500 words related to artifi-
cial life, artificial intelligence, robots and/or R.U.R. and submit it through the
submission form until June 10, 2021.

The essays will be awarded in 3 categories:

e The best essay written by an non-PhD student
e The best essay written by a PhD student

e The best essay related to the centenary of robots and R.U.R. and the
conference theme ”Robots: The century past and the century ahead”

This year, Student Conference Scholarships were awarded to all students who
submitted an essay, covering a free ticket to attend the whole conference. Awards
will be announced at the closing ceremony of the virtual ALIFE 2021 conference
on Friday July 23, 2021.
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Artificial Consciousness: A Framework for its Possibility

By Magnus Imber

The cogito: “1 think, therefore, [ am.” René Descartes holds this claim to be self-evident
and utilizes it as a basis for his philosophy. We must ask, however, whether this initial
proposition of Descartes’ is actually well-supported itself. This initial phrase put forward by
Descartes, something that may be referred to as the indicative cogito, infuses an unfounded
subjectivity into the nature of experience. Descartes observed the act of thought, taking for
granted the notion of the self, but from where does it become so obvious that there is even a
concrete self? Without some other distinct philosophy to supply this answer (e.g., transcendental
idealism), this source is seemingly the same void in which it was found. We ought to further
implore into Descartes’ philosophy from a skeptical perspective, so as to see what other aspects
of it are susceptible to criticism. As such, we will examine the linguistic structure of the cogito,
tracing out how a revised and more intellectually honest form of it leads from Descartes’
skeptical philosophy to the philosophy of Friedrich Nietzsche. From this, we can observe how
the Nietzschean philosophy of mind permits the creation of an artificial consciousness.

In general, Descartes wonders if our perceived reality can be trusted. Are our senses
reliable? To Descartes, a search must be conducted, a search through all inner sense, a search for
that which cannot be doubted. Descartes, simply, is searching for a “clear and distinct idea.”' He
eventually comes to find that the only thing that cannot be doubted is that “I think” and because
of this, it must be the case that “I am,” (this is the Cartesian phrase, “cogito ergo sum’). This
clear first principle allows for an entirely rational philosophy to be constructed.

The philosophy of Friedrich Nietzsche allows for the description of a more accurate first
principle, however. Nietzsche notes that upon introspection, one finds that the self is merely an
illusion, that “the doing is everything.” To Nietzsche, actions are impossible to doubt. Were this
to be contextualized in the Cartesian project, it could be said that the thought is everything, that
there is no “I” that can be rested on. Rather, the cogito is merely a linguistic trick. Descartes

would have been more accurate in saying “cogitare est ergo esse” (to think is therefore to be).

! Smith, Kurt, “Descartes' Theory of Ideas,” Stanford Encyclopedia of Philosophy, Stanford University, June 14,
2017, https://plato.stanford.edu/entries/descartes-ideas/#SimNats.

2 Nietzsche, Friedrich, Nietzsche: On the Genealogy of Morality, Translated by Carol Diethe, (Cambridge:
Cambridge University Press, 2006): aphorism 13.
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Let this new phrase be henceforth referred to as the infinitive cogito, and further let us
refer to the original phrase of Descartes as the indicative cogito. We must now keep in mind that
these terms are shorthand for the full conjugation of the verbs in each phrase. The infinitive
cogito places the verb “cogitare” in the present active infinitive form. The indicative cogito holds
it in the present active indicative.

Further, we may obtain a novel description of reality from the indicative cogito. This
description takes the form of logical implication, whereby if in some empirical situation, “to
think™ occurs, it must also be the case that “to be” also occurs. The precise context and nature of
such an occurrence will be outlined next.

To begin our inquiry into the self of Nietzsche, the function of the self must be made
clear. Valuation is key, here. When initially describing the will to power, Nietzsche notes that the
act of creation is linked to valuation. Valuation precedes individuality and the notion of the self.
Thus, the self is born value laden. Nietzsche notes that “values did man only assign to things in
order to maintain himself he created only the significance of things, a human significance!””
Thus, the self is the mechanism by which the chaotic world of things i1s made into the significant
world of objects. It is the interpretive framework that underlies all conscious experiences of
modern man. Where there is a self, there is the will to power. Where there is the will to power,
one can find life and thus also the action “to be”.* We must note that this does not pose a
situation of predicating over existence, since, again, “to be” is nowhere to be found in “to think.”
Rather, the relationship between “to be” and “to think™ is that of an implication, whereby upon
finding an instance of thought, it is clear that being is also occurring. The proper mode of
analysis is to recognize that for Nietzsche, one cannot be unless one acts (that is, in part, unless
one thinks). We may even recall Nietzsche’s pseudo-existentialist perspective that existence
precedes essence, as outlined in The Anti-Christ.” Through this lens, the precise nature of a thing
(that is, its being) is preceded by action (of both will and intellect). Action does not contain
within itself “to be,” since being is posterior to it. Thus, returning back to our central focus, we
can already see how when correcting the indicative cogito, skeptical thought quickly tumbles

into its conclusion: the philosophy of Nietzsche (since we have now found a more basic claim:

3 Nietzsche, Friedrich, Thus Spoke Zarathustra: A Book for Everyone and No One, Translated by Thomas Common,
(Absurd, 2016): aphorism 15.

4 Nietzsche, Friedrich, Thus Spoke Zarathustra: A Book for Everyone and No One, aphorism 34.

3 Nietzsche, Friedrich, The Anti-Christ. (New York: Tribeca Books, 2010): §54.
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“to think is therefore to be”). Further, we may see how, to Nietzsche, the self is an interpretive
framework for experience.

The specific role this interpretive power is made very clear upon investigation into how
such a self emerges. Nietzsche offers two approaches to understanding the emergence of the self:
creditor/debtor interactions and language. The two approaches are intertwined: in particular, the
language-based analysis offers greater clarity to the debt-based analysis. As such, we will first
analyze how, to Nietzsche, debt and punishment gave rise to consciousness and notions of the
self. Primary to the emergence of the self are social relationships®. Nietzsche notes that there is a
sort of social contract between individuals and the communities that they are a part of. In this
relationship, acts that harm the group are punished. This punishment, whether it be physical,
psychological, or social, is centrally related to pain. Through this punishment, there emerges a
community memory of the individual being punished. Because of the knowledge of the
possibility of such pain, individuals restrict, consciously or unconsciously, their actions, seeing
themselves as the cause of their own acts. This is a basic form of responsibility. Additionally, the
persistent threat of punishment is processed through an individual’s memory and gives way to a
unified notion of self that persists in time. This is beneficial, as it gives individuals a point of
reference for future punishment. Seen in a purely evolutionary lens, a perception of a self allows
for individuals to avoid pain and possible death. Developing the faculties that allow for such an
emergent self will be naturally selected for. In some sense, the development is inevitable in
highly-social animals. In 7he Gay Science, Nietzsche also notes that the development of
language and consciousness occur in tandem.’

In the context of societal relationships, we may better understand the importance of
language to Nietzsche. First, we may acknowledge that communication aids in the ability for
groups to express what is and is not acceptable. Given this pressure to have communicable
meaning, we naturally see the growth of languages among animals (particular with humans).
Thus, as fear of pain creates the sense of self, so too does it contribute to the rise of a language.
Consciousness and language emerge in parallel and grow in parallel. Even more than this, they
can feed into the growth of each other. As self-awareness and the concept of individual identity

become more prevalent, there will naturally be an increase in what language can describe (e.g.,

¢ Kerruish, 3-5.
" Nietzsche, Friedrich, The Gay Science: With a Prelude in Rhymes and an Appendix of Songs, Translated by Walter
Arnold Kaufmann, (New York: Vintage Books, 1974): 297-298.
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language being able to describe things like “I”, “myself”, and “you”). Similarly, language can
allow for greater understanding about what it means to be a self. After all, it has already been
extensively shown by Nietzsche that the very concept of a self is an illusion, an illusion partly
carried out through the linguistic trick of the notion of “I”.

Continuing the inquiry into the nature of Nietzsche’s self, the precise makeup of the self
ought to be considered. To start, we look to Erika Kerruish, who notes that the Nietzschean view
of the self is that of an aggregate.® Moreover, she notes that this conception holds the self as
non-natural. This is not to suggest a supernatural self, one based on a soul or some such
metaphysical substance. Rather, by non-natural we can simply speak of an intangible, or
conceptual self. Let us also distinguish this view of the self from a conception of the self as an
epiphenomenon. Whereas an epiphenomenal self would have no causal power, the self of
Nietzsche definitely has such causal power. Even if the self is an illusion overlayed on top of its
component phenomenal elements, the self still informs our choices and has some impact on the
phenomenal world through the will to power. Nietzsche’s self cannot be epiphenomenal, nor can
it be supernatural, and as such must stay within the phenomenal world. No matter how we refer
to Nietzsche’s self, whether it be as an organization of phenomena or as an emergent relationship
between such phenomenal things, we arrive at the same perspective all the same: that of the
phenomenal, relational self.

Here, it might be useful to discuss Nietzsche’s philosophy of drives. To Nietzsche, we are
composed of countless drives, each of which are interconnected in intricate and complex ways.’
Because of the entanglement of these drives, we cannot know ourselves well enough to sidestep
our biases or come to a clear and accurate picture of our own selves. There are simply too many
ways in which these drives interconnect for us to fully grasp the self.

We may thus take two central principles forward: 1) the external factors that help define
the self are relationships with other beings and the primary internal factor is the fear of pain, and
2) such factors are generally categorized through the lens of and evolve with language. We may

then constrain the set of all phenomena that could possibly influence the self to include only

8 Kerruish, Erika, “Interpreting Feeling: Nietzsche on the Emotions and the Self,” Minerva - An Internet Journal of
Philosophy, 13 (2009): 3.

? Nietzsche, Friedrich, Daybreak, 119, quoted in Katsafanas, Paul, “Nietzsche on Agency and Self-Ignorance,”
Journal of Nietzsche Studies 43, no. 1 (2012): 13, https://doi.org/10.5325/jnietstud.43.1.0005.
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interpersonal/societal relationships, sources of pain or other strong emotions, and other various
biological/neurological influences on the individual.

Despite the unknowability of the self, as was mentioned above, this does not preclude the
possibility that not all of these drives are necessary for the creation of a self. For instance, the
drive for love may be ancillary, and a consciousness could be constructed that is not rooted in
this drive. In fact, there is no reason to suspect that, with the possible exception of the will to
power, any of our constituent drives are necessary for our emergent concept of selfhood. Given
this, a far less complex web of drives could give rise to a consciousness. The construction of
these drives isn’t a horribly complicated matter, either, as to replicate a drive simply requires
knowledge of its various constituent phenomena. For instance, we could identify a set of ten
phenomena that make up the drive to, say, thrive in one’s environment. Replicate these
phenomena and place them in the same context as they are found in ourselves, and we should
artificially obtain the same drive. Do this for all required drives and a self should emerge from
this artificial void.

Given that the self has emerged from both linguistic developments and
social/evolutionary pressures, it would be required to apply the same selection pressures when
attempting to create drives and a self. Thus, the best way to go about creating consciousness is to
simulate life as best as we can. In essence, artificial life will lead to artificial consciousness.

We may outline a rough framework for how this simulated life would be gone about
being made. The first step would be to start with a thing that can remember things, attempt to
avoid future pain, and interact with its environment. Next, this thing must gradually adapt to its
environment (so as to include other remembering-things that it interacts with). In this step, it
must form complex behaviors in response to avoiding pain. Then, this thing must contextualize
these behaviors around itself and will thus form a notion of its self. These steps do not
necessitate any impossible feat or miracle. Rather, each step is simply one stage of development
of our created soon-to-be-being. After all, biological selves were able to come about through this
process. Thus, I find it highly reasonable that with sufficient scientific and philosophical
understanding of the mind and of the empirical conditions from which it arises, an artificial
consciousness could be created (assuming the correctness of the Nietzschean and more generally,

the skeptical, project).
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Upon the assumption of skepticism, the construction of an artificial consciousness is
permitted as possible. I admit that the prospect of creating a consciousness could be seen as
outlandish. The aim of my argument is not to describe how to improve a face-recognition
program (or some other artificial intelligence application). No, artificial intelligence is not my
area of focus — here, I focus on artificial consciousness alone. The possibilities of artificial
intelligence are fairly mundane, at least in comparison to the achievement of creating a conscious
machine. If we do away with Descartes’ archaic notions of the self and instead embrace the
philosophy of mind of Nietzsche, we might very well create consciousness. This step forward
would be monumental, for in essence, we would be recreating ourselves (at least, everything that
is truly wondrous about us). Let us direct our gaze toward the creation of new consciousnesses,

toward a new path forward for humanity: toward a path of creation.
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Increasing Target-Language Accuracy in Google Translate

Miyashita Himena Meldy
The University of Tokyo

January 2021

1 Introduction

In today’s society, Google Translate has become almost synonymous with machine
translation (MT). Since its introduction into the MT field in 2007, it has outperformed other existing
translation software, especially following its groundbreaking update in 2016 from a statistics-based
system to a neural-net-based system [1]. However, Google Translate has yet to become perfectly
accurate; the software remains in some instances, unable to produce output that is accurate in terms
of grammar and meaning. Here, a basic proposal on minor changes to the training system is

made—incorporating monolingual data into the system.

2 A Brief History

Language translation through computers, also known as automated translation or machine
translation (MT), is said to have been first developed by International Business Machines
Corporation (IBM) in the Cold War [1]. Based on a small database of 250 words, and programmed
grammatical rules in the system, a basic rule-based approach to machine translation was developed.
However, as grammar is variable and contains exceptions, rules for such exceptions were further

programmed into the system, which conversely led to greater inaccuracy in translation output.

A few decades later, a new statistics-based system was introduced by IBM, and was later
picked up upon by Google in 2007 [1]. The system took into the account the probabilities of
translations and certain word combinations. Through scanning a large database of web pages for

texts that appear to be translations of one another (known as parallel texts), Google created a



translation model that could suggest multiple translations to texts from a source language. This
version of Google Translate gained popularity for its relative accuracy compared to previously
available MT software [1], however, Google Translate has since then gone through one more major

transformation that greatly reduced its errors by around 60% [2].

3 Basic Architecture of Google Translate

In 2016, Google Translate switched to a new algorithm based on the Al technique of deep
learning—the Google Neural Machine Translation system (GNMT) [2]. Simply put, the system
makes use of neural networks, whereby it contains computational units that mimic the structure and
functions of neurons in the brain. The model has 8 encoder layers (left of Figure 1) and 8 decoder

layers (right of Figure 1), with attention mechanisms between the layers.

Gpus GPUS |

8 élayers

GPU3
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GPU3 |
GPU2 GPU2 |

GPU1 | GPUL |

Figure 1: Model architecture of GNMT [2].

The encoder Recurrent Neural Network (RNN) is responsible for converting input symbols
into vectors, which are representations of words in number form. Here, the conditional probabilities
of word sequences are calculated. Recurrence allows the network to ‘remember’ and make use of

all the preceding input information to calculate this probability. Google makes use of a



bi-directional bottom encoder layer, which allows for words to be converted from both directions of
sentences (beginning to end, and end to beginning) [3]. This means that the context of a single word
within an entire sentence will be taken into account, thus enabling the algorithm to determine the

conditional probabilities of word combinations in the sequence to a greater degree of accuracy.

An attention network joins the top encoder layer to the bottom decoder layer, suggesting
words in the target language based on the vectors taken from the encoder [4]. It also allows for the
decoder to ‘pay attention’ to different positions in the source sentence through its process of
decoding [2]. The decoder RNN takes suggested words from the attention network and outputs
them into sentences in the target language. As seen in Figure 1, a Softmax layer is combined with
the decoder network and implemented just before the output layer. It assigns decimal probabilities
to the candidate output symbols, which then determines the final output sentence [5], as shown in

Figure 2.

hidden

Olg hidden logits

( apple: yes/no?
\ )
() bear: yes/no?
N
v/'-‘\l -
" , candy: yes/no
_
) dog: yes/no?
) egg: yes/ne
-~ ’
Softmax

Figure 2: A Softmax layer determines the final output [5].

To train this system, Google utilises labelled datasets of parallel text derived from publicly
available corpora: the 2014 Workshop on Machine Translation English-to-French (WMT En—Fr)
and English-to-German (WMT En—De), as well as Google’s own translation production database

[2]. As a deep learning system, GNMT is able to identify differences and patterns between



languages without the need for human input of such rules. This is especially useful, given the rules
of languages are constantly changing. The reason for its multiple layers is that the more layers there
are, the more the system is able to capture subtle differences between languages. These layers form
a deep Long Short Term Memory (LSTM) network, a special kind of RNN that allows the system to
choose to add or remove information to the output, while taking into consideration the preceding

and succeeding information much more effortlessly than regular RNNs [6].
4 Limitations of Google Translate

Let us consider a case brought forward by Douglas Hofstadter, a professor of cognitive
science and comparative literature, in an article from The Atlantic [7]: as he input a piece of
Chinese text into the software, he realised that Google translate had incorrectly translated the phrase
“Fg 55174, By character, the phrase literally translates to “south book room go walk”, and was
translated by Google as “South study walking”. While Hofstadter did not know what this phrase
meant, he could identify that it was supposed to be a noun instead of an action verb. As such, he
used the Google search engine, through which he discovered that the two characters “fTE" were
rare terms used in the Qing Dynasty to mean “academic aide”. Hofstadter thus concluded that the

original phrase could be translated as “South Study special aide”.

As shown, just because GNMT can identify patterns between languages and produce highly
probable translations of certain words, does not mean that it can always follow the specific syntax
of the target language. This affects the grammatical accuracy of output, and, as in the example

above, their meaning.
5 Proposed Additions

Instead of relying solely on parallel texts, monolingual data should be incorporated into the
training data for GNMT. By doing so, the system would be able to learn a language model for the

target language, strengthening the syntax and meaning-accuracy of the output.

4



Monolingual data should be input into both the encoder and the decoder networks. Some
research has suggested that systems tend to ‘forget’ information obtained from the encoder if
trained on more monolingual data than parallel data [8]. As such, some proposals have been to have
an encoder-independent layer that feeds information from the monolingual data into the decoder
network, as done by Domhan & Hieber [8]. On the other hand, Senrich et al. have been successful
in incorporating monolingual data into the encoder network, without having to change the

architecture of their original neural network [9].

L T

GPUB

GPU3
GPU2

GPU1

Monolingual Input

Figure 3: Proposed GNMT model (adapted from [2]). The encoder network is not shown and

remains as in the original GNMT model [2].

Adapting from Domhan & Hieber’s model [8], a new GNMT model is proposed as shown in
Figure 3. An additional RNN Learning Model (LM) layer is connected to the decoder network. This
LM layer is source-independent (is not connected to encoder), and only learns from a language

model provided by ET (target word embedding matrix), which represents input words in the form of



vectors, similar to the function of the encoder, as well as maps similar vectors closer together so as
to allow the relations between words to be easily identified [10]. The LM layer thus uses the input
from ET and predicts the next words in the target language, feeding this information to both the
decoder RNN, to be taken into account together with predictions from the encoder RNN, as well as
the Softmax layer, which produces an output based on its probability calculations. In order to ensure
that systems do not ‘forget’ information from the encoder network, the proportion of monolingual

data should be controlled to be less than 50% of the total training data.

The monolingual data should be derived from web pages, so as to keep the language model
as up to date as possible, allowing for slangs and new vocabularies to be translatable. This may call
for the need to train the system more frequently, for example, once a month, which is feasible given
the training for GNMT takes roughly a week [2]. No architectural changes are made to the encoder
network, however, changes need to be made to the input data. Senrich et al. employed the
back-translation technique whereby the monolingual target-language text is translated back into the

source language first, so as to create parallel text which the system can learn from [9].

Through these changes, instead of only translating inputs into probable outputs, the system
may also learn to identify parts of speech before the translation process. Going back to Hofstadter’s
case [7], it can be hoped that the GNMT system will learn to identify that the verb “ff (to do)" that
appeared before “Fi 115174 rendered the phrase a noun, and thus become able to suggest

translations on the basis that it is a noun.

Furthermore, considering that much more monolingual data is available than parallel data

[9], this model will prevent large amounts of monolingual data from going to waste.



6 Limitations

This proposed model remains a theoretical model given the scope of this paper, and has yet
to be experimented on. At this moment, possible limitations that can be inferred are increases in
training time, as well as contradictory decreases in the accuracy of output. The compilation of
monolingual databases from web pages will also be time consuming and possibly costly, as the data

needs to be quality-checked and labelled frequently.

7 Conclusion

Nevertheless, previous research suggests the viability of such a model, as well as its ability
to result in more accurate, natural output. With this model, coupled with Google’s recent update that
allows users to review and contribute translations [11], Google Translate can be expected to become
increasingly accurate in its translations. Further investigations could be how Google’s Image Search
results could be incorporated as training data, so as to help the system identify meanings of rare
words. With Google Translate becoming ever closer to human translators, it is hoped that the
software will not be seen as replacing human translators, but as augmenting their jobs, as well as

increasing the level of everyday communication between people around the world.
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The benefits of self-replicating computer programs as model
organisms for experimental evolution

Experimental evolution allows us to test general hypotheses about evolutionary processes by
studying real-time evolutionary changes occurring in experimental populations (Kawecki et al.,
2012). Indeed, experimental evolution is an essential technique in our methodological repertoire
for understanding the evolution of life as it is, life as it could have been, and life as it might be.
Conventionally, evolution experiments are performed under laboratory conditions using
populations of biological organisms that are tractable to observe and experimentally manipulate
(e.g., Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, and various
phage-bacteria systems). For example, over 70,000 generations of evolution have elapsed in the
ongoing long-term evolution experiment with E. coli (Barrick et al., 2020), which has yielded
insights on a wide range of topics, including long-term evolutionary dynamics (Wiser et al.,
2013; Good et al., 2017), historical contingency (Travisano et al., 1995; Card et al., 2019), the
evolution of mutation rates (Sniegowski et al., 1997), and the origins of novel traits (Blount et
al., 2008). Here, I discuss the benefits of using artificial life systems to conduct evolution
experiments; in particular, [ review the value of self-replicating computer programs as model

organisms for experimental evolution.

Digital evolution experiments have emerged as a powerful research framework from which
evolution can be studied. In digital evolution, self-replicating computer programs (digital
organisms) compete for resources, mutate, and evolve in a computational environment (Wilke
and Adami, 2002). Digital organisms typically comprise a linear sequence of program

instructions (a genome) and a set of virtual hardware components used to interpret and express



those instructions. To reproduce, a digital organism must execute instructions that allow it to
copy its genome instruction-by-instruction and then divide (producing an offspring).

However, self-replication is imperfect and can result in mutated offspring. The combination of
heritable variation due to imperfect self-replication and competition for limited resources (e.g.,

space, CPU time, etc.) results in evolution by natural selection.

Digital organisms live, interact, and evolve in entirely artificial environments constructed by the
experimenters. One potential drawback to digital evolution is that the conclusions drawn from an
experiment have the potential to be artifacts of the constructed artificial environment (Wilke and
Adami, 2002). This drawback, however, can also be applied to most microbial experimental
evolution where organisms are extracted from their natural environment and placed in an

artificial environment constructed in a laboratory.

Microbial model organisms at least have natural ancestry and can often be used to infer historic
evolutionary events. Digital evolution studies, however, are not grounded in the same
evolutionary history and biochemical compounds as carbon-based life on Earth. This limitation
makes it more challenging to use digital evolution studies to illuminate idiosyncrasies and
contingencies associated with the history of life on our planet. However, such drawbacks are also
digital evolution's strength as a research framework, since we are not limited to studying only
one particular instance of evolution or locked in to using nucleic-acid, amino acid, and protein
based representations. Furthermore, we can fully observe and control digital environments at
rapid speeds, allowing us to perform experiments and analyses that would otherwise be

challenging or even impossible to perform in biological systems. Additionally, by reproducing



results across biological and digital systems, we can disentangle general principles from effects

specific to a particular model organism or planetary body (Wilke and Adami, 2002).

Here, I overview four properties of digital evolution systems that make them valuable
complements to traditional carbon-based model organisms for studying evolutionary processes,

providing exemplars of each: (1) generality, (2) transparency, (3) control, and (4) scale.

Generality

Digital evolution systems offer researchers the unique opportunity to study evolution in
organisms that share no ancestry with carbon-based life (Wilke and Adami, 2002). As biologist
John Maynard Smith made the case, "So far, we have been able to study only one evolving
system and we cannot wait for interstellar flight to provide us with a second. If we want to
discover generalizations about evolving systems, we will have to look to artificial ones"
(Maynard Smith, 1992). Indeed, studies of carbon-based lifeforms that all share common
ancestry dominate evolutionary biology. On their own, these studies can provide deeper insights
into life on Earth. However, such studies provide a limited lens with which to make
generalizations about evolutionary processes, as they are biased by the particular history of life
on our planet. By testing hypotheses across biological and digital model systems, we can

disentangle general principles from the effects of specific model organisms.

For example, what is the relative importance of adaptation, chance, and history in explaining
diversity in evolved populations? Using experimental populations of Escherichia coli, Travisano
et al. disentangled the relative contributions of adaptation, chance, and history in the evolution of

fitness and cell size (a trait weakly correlated with fitness) (Travisano et al., 1995).



Travisano et al. found that fitness gains were most strongly influenced by adaptive processes,
and variance in cell size were most explained by chance and history. Wagenaar and Adami
replicated this study using digital organisms (Wagenaar and Adami, 2004), finding that the
overall patterns observed in E. coli and in digital organisms were broadly similar. Ongoing
studies in digital organisms are extending these concepts further, using more restarts at different
time points and across different environments, allowing us to explore more of the nuances at play

(Bundy et al., 2021).

Transparency

Digital evolution systems allow for perfect, non-invasive data tracking. Experimenters can save
the complete details of evolving populations for further analysis, including every mutation that
occurs, every genotype that exists, every phenotype that is expressed, every environmental state
that occurs, every time an organism interacts with another organism or with the environment, et
cetera. By tracking parent-offspring relationships, we can analyze complete evolutionary
histories within an experiment, which circumvents the historical problem of drawing
evolutionary inferences using incomplete records (from frozen samples or fossils) and extant

genetic sequences.

Many digital evolution studies inspect the complete lineages of evolved digital organisms to
tease apart the mutation-by-mutation evolution of novel traits (Lenski et al., 2003; Dolson and
Ofria, 2017; Grabowski et al., 2013; Goldsby et al., 2014; Pontes et al., 2020). In an exemplary
analytical undertaking, Dolson and Ofria identified spatial hotspots of evolutionary potential in

heterogeneous environments (i.e., positions where novel traits disproportionately evolved). They



found evidence that the particular paths traversed by lineages through space might explain the

locations of these evolutionary hotspots (Dolson and Ofria, 2017).

Recording organism relationships and interactions can be valuable for many other goals as well.
For example, by tracking phenotypes over time, Cooper and Ofria were able to observe the
real-time evolution of stable ecosystems under resource-limited conditions (Cooper and Ofria,
2002). In a similar vein, Fortuna et al. tracked host-parasite interactions to investigate how the

structure of infection networks is shaped by antagonistic coevolution (Fortuna et al., 2019).

Control

Digital evolution systems facilitate experimental manipulations that go beyond what is possible
in laboratory or field experiments. These capabilities allow researchers to empirically test
hypotheses that would otherwise be relegated to theoretical analyses. For example, digital
evolution systems allow experimenters to precisely control basic parameters such as population
size and mutation rate. By comparing populations evolving under different mutation rates, Wilke
et al. discovered the "survival of the flattest" effect where high mutation rate environments
selected for genomes with slower replication rates but that were more robust to mutations (Wilke

etal., 2001).

Digital evolution experiments also allow for fine-grained control over other aspects of an
environment. For example, Dolson et al. used Avida to experimentally manipulate the spatial
distribution of resource availability, finding that phenotypic diversity was positively correlated
with spatial entropy and that spatially heterogeneous environments exhibited increased

evolutionary potential relative to more homogeneous environments (Dolson et al., 2017). By



experimentally controlling how environments changed temporally, Nahum et al. demonstrated
that a single temporary environmental change can improve fitness landscape exploration and

exploitation in evolving populations of digital organisms (Nahum et al., 2017).

Digital evolution systems also allow experimenters to monitor and manipulate mutational effects
in real-time. Covert et al. performed real-time reversions of all deleterious mutations as they
occurred to isolate their long-term effects on evolutionary outcomes (Covert et al., 2013).
Lalejini et al. implemented a range of gene duplication mutation operators (each designed to
isolate a single effect of duplication mutations) in order to tease apart why such mutations can

promote the evolution of complex traits (Lalejini et al., 2017).

For an individual digital organism, we can perform systematic knockout analyses to identify
which instructions are responsible for producing a given phenotypic outcome. This type of
analysis has been applied along lineages to identify how information accumulates (Oftia et al.,
2008) or to investigate how environmental change shapes the evolution of genetic architectures
in digital organisms (Canino-Koning et al., 2016). Mutational landscaping analyses go a step
further than knockout analyses, allowing experimenters to fully characterize a local mutational
landscape by evaluating all possible one- and two-step mutants.

Such analyses have been used to quantify epistasis (Lenski et al., 1999) and mutational
robustness (Elena et al., 2007) and to investigate the evolution of evolvability (Canino-Koning et

al., 2019).



Scale

Modern computers allow us to observe many generations of digital evolution at tractable time
scales; thousands of generations can take mere minutes as opposed to months, years, or
centuries. For example, populations of digital organisms have been used to test theoretical
predictions about the expected rate of adaptation over hundreds of thousands of generations

(Wiser 2015; Wiser et al. 2018).

Additionally, digital evolution experiments allow researchers to enact complex experimental
protocols with minimal extra effort. That is, unlike in wet-lab experiments, computational

experiment protocols can easily be automated using modern scripting tools.

With the increasing accessibility of high performance computing systems, it can be trivial to
evolve hundreds of replicate populations for a given experimental treatment. Evolution is an
inherently stochastic process, so increased replication provides a clearer picture of the
distribution of possible treatment effects. Further, a high degree of replication increases the odds
that experimenters will be able to observe and study rare events. For example, Pontes et al.
evolved 900 replicate populations of digital organisms in order to observe 10 examples of
reversal learning behavior (i.e., the ability to relearn associations between cues and responses

when cues are swapped) to further analyze (Pontes et al., 2020).

Even the fastest computing systems, however, lack the parallelism of the real world.
That is, digital evolution systems cannot yet rival bacterial systems in their ability to scale to

large population sizes. A typical population of digital organisms contains thousands to tens of



thousands of organisms; however, microbial populations used in laboratory experiments often

contain several orders of magnitude more individuals.

Outlook

In this brief review, I highlighted four features of evolution experiments with digital
organisms—generality, transparency, control, and scale—that make digital experiments a
valuable methodological complement to more conventional evolution experiments with
carbon-based model organisms. While digital organisms have a proven track record as a model
system, ongoing research continues to advance the applicability of digital organisms for studying
the general principles of evolution. For example, there are many different model organisms used
in biological research, each with their own benefits and shortcomings for conducting evolution
experiments; yet, historically, there have been very few different forms of self-replicating
computer programs used in digital evolution experiments. As such, new ways of representing
and interpreting digital organisms are being developed (e.g., Lalejini and Ofria, 2018).
Additionally, digital evolution researchers are actively exploring new types of digital
environments (e.g., Moreno and Ofria, 2021), analyses (e.g., Dolson et al., 2020), and
visualizations (e.g., Dolson and Ofria, 2018), each of which expand the set of investigations
possible with digital organisms. Finally, new hardware (Ackley, 2020) and software (Ackley and
Cannon, 2011; Moreno and Ofria, 2020) systems designed with artificial life in mind will

continue to increase the scale of digital evolution experiments beyond our current limitations.
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Scalability without Isolation is Critical for Future Digital Evolution Models

Digital evolution techniques compliment traditional wet-lab evolution experiments by
enabling researchers to address questions that would be otherwise limited by:
e reproduction rate (which determines the number of generations that can be observed in a
set amount of time),
e incomplete observations (every event in a digital system can be tracked),
e physically-impossible experimental manipulations (every event in a digital system can
can be arbitrarily altered), or
e resource- and labor-intensity (digital experiments and assays can be easily automated).
The versatility and rapid generational turnover of digital systems can easily engender a notion
that such systems can already operate at scales greatly exceeding biological evolution
experiments. Although digital evolution techniques can feasibly simulate populations numbering
in the millions or billions, very simple agents and/or very limited agent-agent interaction. With
more complex agents controlled by genetic programs, neural networks, or the like, feasible

population sizes dwindle down to thousands or hundreds of agents.

Putting Scale in Perspective

Take Avida as an example. This popular software system that enables experiments with
evolving self-replicating computer programs. In this system, a population of ten thousand can
undergo about twenty thousand generations per day. This means that about two hundred million

replication cycles are performed in a day [Oftia et al., 2009].



Each flask in the Lenski Long-Term Evolution Experiment hosts a similar number of
replication cycles. In their system, E. coli undergo about six doublings per day. Effective
population size is reported as 30 million [Good et al., 2017]. Hence, about 180 million
replication cycles elapse per day.

Likewise, in Ratcliff’s work studying the evolution of multicellularity in S. cerevisiae,
about six doublings per day occur among a population numbering on the order of a billion cells
[Ratclift, 2012]. So, around six billion cellular replication cycles elapse per day in this system.

Although artificial life practitioners traditionally describe instances of their simulations as
“worlds,” with serial processing power their scale aligns (in naive terms) more along the lines of
a single flask. Of course, such a comparison neglects the disparity between Avidians and bacteria
or yeast in terms of genome information content, information content of cellular state, and both
quantity and diversity of interactions with the environment and with other cells.

Recent work with SignalGP has sought to address some of these shortcomings by
developing digital evolution substrates suited to more dynamic environmental and agent-agent
interactions [Lalejini and Ofria, 2018] that more effectively incorporate state information
[Lalejini et al., 2020; Moreno, 2020]. However, to some degree, more sophisticated and
interactive evolving agents will necessarily consume more CPU time on a per-replication-cycle

basis — further shrinking the magnitude of experiments tractable with serial processing.

The Future is Parallel
Throughout the 20th century, serial processing enjoyed regular advances in
computational capacity due to quickening clock cycles, burgeoning RAM caches, and

increasingly clever packing together of instructions during execution. Since, however,



performance of serial processing has bumped up against apparent fundamental limits to
computing’s current technological incarnation [Sutter, 2005]. Instead, advances in 21st century
computing power have arrived via multiprocessing [Hennessy and Patterson, 2011, p.55] and
hardware acceleration (e.g., GPU, FPGA, etc.) [Che et al., 2008].

Contemporary high-performance computing clusters link multiprocessors and
accelerators with fast interconnects to enable coordinated work on a single problem [Hennessy
and Patterson, 2011, p.436]. High-end clusters already make hundreds of thousands or millions
of cores available. More loosely-affiliated banks of servers can also muster significant
computational power. For example, Sentient Technologies notably employed a distributed
network of over a million CPUs to run evolutionary algorithms [Miikkulainen et al., 2019].

The availability of orders of magnitude greater parallel computing resources in ten and
twenty years’ time seems probable, whether through incremental advances with traditional
silicon-based technology or via emerging, unconventional technologies such as bio-computing
[Benenson, 2009] and molecular electronics [[Xiang et al., 2016]](#xiang2016molecular. Such
emerging technologies could make greatly vaster collections of computing devices feasible,
albeit at the potential cost of component-wise speed [Bonnet et al.,
2013](#bonnet2013amplifying); Ellenbogen and Love, 2000] and perhaps also component-wise

reliability.

What of Scale?
Digital evolution practitioners have a rich history of leveraging distributed hardware. It is
common practice to distribute multiple self-isolated instantiations of evolutionary runs over

multiple hardware units. In scientific contexts, this practice yields replicate datasets that provide



statistical power to answer research questions [Dolson and Ofria, 2017]. In applied contexts, this
practice yields many converged populations that can be scavenged for the best solutions overall
[Hornby et al., 2006].

Another established practice is to use “island models” where individuals are transplanted
between populations that are otherwise independently evolving across distributed hardware.
Koza and collaborators’ genetic programming work with a 1,000-cpu Beowulf cluster typifies
this approach [Bennett I1I et al., 1999].

In recent years, Sentient Technologies spearheaded digital evolution projects on an
unprecedented computational scale, comprising over a million CPUs and capable of a peak
performance of 9 petaflops [Miikkulainen et al., 2019]. According to its proponents, the scale
and scalability of this DarkCycle system was a key aspect of its conceptualization [Gilbert,
2015]. Much of the assembled infrastructure was pieced together from heterogeneous providers
and employed on a time-available basis [Blondeau et al., 2012]. Unlike island model where
selection events are performed independently on each CPU, this scheme transferred evaluation
criteria between computational instances (in addition to individual genomes) [Hodjat and
Shahrzad, 2013].

Sentient Technologies also accelerated the deep learning training process by using many
massively-parallel hardware accelerators (e.g., 100 GPUs) to evaluate the performance of
candidate neural network architectures on image classification, language modeling, and image
captioning problems [Miikkulainen et al., 2019]. Analogous work parallelizing the evaluation of
an evolutionary individual over multiple test cases in the context of genetic programming has
used GPU hardware and vectorized CPU operations [Harding and Banzhaf, 2007b; Langdon and

Banzhaf, 2019].



Existing applications of concurrent approaches to digital evolution distribute populations
or individuals across hardware to process them with minimal interaction. Task independence
facilitates this simple, efficient implementation strategy, but precludes application on elements
that are not independent. Parallelizing evaluation of a single individual often emphasizes
data-parallelism over independent test cases, which are subsequently consolidated into a single
fitness profile. With respect to model parallelism, Harding has notably applied GPU acceleration
to cellular automata models of artificial development systems, which involve intensive
interaction between spatially-distributed instantiation of a genetic program [Harding and
Banzhaf, 2007a]. However, in systems where evolutionary individuals themselves are
parallelized they are typically completely isolated from each other.

We argue that, in a manner explicitly accommodating capabilities and limitations of
available hardware, open-ended evolution should prioritize dynamic interactions between

simulation elements situated across physically distributed hardware components.

Leveraging Distributed Hardware for Open-Ended Evolution

Unlike most existing applications of distributed computing in digital evolution,
open-ended evolution researchers should prioritize dynamic interactions among distributed
simulation elements. Parallel and distributed computing enables larger populations and
metapopulations. However, ecologies, co-evolutionary dynamics, and social behavior all
necessitate dynamic interactions among individuals.

Distributed computing should also enable more computationally intensive or complex
individuals. Developmental processes and emergent functionality necessitate dynamic

interactions among components of an evolving individual. Even at a scale where individuals



remain computationally tractable on a single hardware component, modeling them as a collection
of discrete components configured through generative development (i.e., with indirect genetic
representation) can promote scalable properties [Lipson, 2007] such as modularity, regularity,
and hierarchy [Hornby, 2005; Clune et al., 2011]. Developmental processes may also promote
canalization [Stanley and Miikkulainen, 2003], for example through exploratory processes and
compensatory adjustments [Gerhart and Kirschner, 2007]. To reach this goal, David Ackley has
envisioned an ambitious design for modular distributed hardware at a theoretically unlimited
scale [Ackley and Cannon, 2011] and demonstrated an algorithmic substrate for emergent agents

that can take advantage of it [Ackley, 2018].

A Path of Expanding Computational Scale

While by no means certain, the idea that orders-of-magnitude increases in compute power
will open up qualitatively different possibilities with respect to open-ended evolution is well
founded. Spectacular advances achieved with artificial neural networks over the last decade
illuminate a possible path toward this outcome. As with digital evolution, artificial neural
networks (ANNs) were traditionally understood as a versatile, but auxiliary methodology — both
techniques were described as “the second best way to do almost anything” [Miaoulis and
Plemenos, 2008; Eiben, 2015]. However, the utility and ubiquity of ANNSs has since increased
dramatically. The development of AlexNet is widely considered pivotal to this transformation.
AlexNet united methodological innovations from the field (such as big datasets, dropout, and
ReLU) with GPU computing that enabled training of orders-of-magnitude-larger networks. In
fact, some aspects of their deep learning architecture were expressly modified to accommodate

multi-GPU training [Krizhevsky et al., 2012]. By adapting existing methodology to exploit



commercially available hardware, AlexNet spurred the greater availability of compute resources
to the research domain and eventually the introduction of custom hardware to expressly support
deep learning [Jouppi et al., 2017].

Similarly, progress toward realizing artificial life systems with indefinite scalability
seems likely to unfold as incremental achievements that spur additional interest and resources in
a positive feedback loop with the development of methodology, software, and eventually
specialized hardware to take advantage of those resources. In addition to developing
hardware-agnostic theory and methodology, we believe that pushing the envelope of open-ended
evolution will analogously require designing systems that leverage existing
commercially-available parallel and distributed compute resources at circumstantially-feasible

scales.
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The Evolution of Restraint on Multicellularity in Avida 4

1 Introduction

Artificial selection has been used by evolution researchers to study and explain the principle
of natural selection for over one hundred years. For example, in The Origin of Species, Darwin
(1859) used examples of artificial selection to lay the groundwork for his natural selection analog
[1]. Though debate continues about the role of group selection in natural settings [2], more
recent experiments using artificial selection have significantly increased our understanding of
short- and long-term evolutionary processes [3].

One type of group selection, called antagonistic multilevel selection, is frequently seen in
natural groups that exhibit division of labor [1]. In this type of selection, the between-group
pressure to increase the group’s fitness is at partial or total odds with the within-group pressure
for individuals within the group to increase their fitness. For example, the cells of a multicellular
organism undergo a within-group pressure to specialize on the role with the highest reward and
a between-group pressure for the organism’s cells to perform a diverse suite of tasks [4]. When
the within-group pressure for cells to reproduce (i.e., go rogue to increase their own fitness)
overwhelms the between-group pressure to control cellular reproduction, it results in cancer [5].

In this paper, we use the Avida digital evolution platform [6] to address the question: Do
multicells evolve restraints on multicellularity when under treatments that allow rogue cell
behavior? Digital evolution allows us to evolve two groups of digital multicells — a control
group in which rogue cell behavior is programmatically prohibited, and a treatment group in
which it is allowed. First, we look for evidence of cancer-like behavior in the treatment group.
Second, we look for a decline over time in the amount of cancer-like behavior exhibited by a
multicell. If restraints on multicellularity do not evolve in the treatment group, then it will not
show a decline in the amount of cancer-like behavior exhibited. If cancer-like behavior emerges
in the treatment group and then diminishes, however, natural selection for cancer prevention
has evolved.

2 Background

2.1 Major Transitions Research with Avida 4

This project builds on Devolab alumni Dr. Heather Goldsby’s work using Avida 4 to study
the major evolutionary transition from single to multicell organisms. Avida is an open-source
scientific software platform for conducting and analyzing experiments with self-replicating and
evolving computer programs [6]. In 2012, Goldsby, Dornhaus, Kerr, and Ofria found that task-
switching costs promote the evolution of division of labor and shifts in individuality between
cells in digital multicellular organisms in Avida 4 [7]. Their study showed that higher task
switching costs lead to increased division of labor among cells.

Next, Goldsby, Kerr, Ofria, and Knoester, proposed the “dirty work hypothesis” as the evo-
lutionary origin of somatic cells, which stated that mutagenic effects associated with metabolism
promote the evolution of germ-soma differentiation in multicells [8]. The study found that
psuedo-soma cells — precursors to reproductive division of labor — do more mutagenic work,
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while the multicells preserved their genetic material by having a subset of cells do less or no
mutagenic work. In this way, multicells made use of phenotypic plasticity to divide the workload
prior to the evolution of somatic cells [§].

In the same year, Goldsby, Knoester, Kerr and Ofria looked at the effects of conflicting pres-
sures on the evolution of division of labor, exploring how populations respond to antagonistic
multilevel selection pressures [1]. They found that digital organisms from lineages performing
highly rewarded roles used reproductive restraint in order to co-existence with organisms from
other lineages. This inspired the question: Could multicells evolve similar forms of reproductive
restraint to suppress rogue cell behavior (e.g., cancer)?

2.2 Biological Evolution and Cancer

In 1977, Richard Peto identified an interesting paradox in cancer incidence rates across
species. Now known as “Peto’s paradox,” he found that larger and longer-lived species do not
display increased cancer rates proportional to their larger number of cell divisions [9]. The
current leading hypothesis explains this pattern via natural selection for differential cancer
prevention in these larger, longer-lived species [10].

According to evolutionary biologist Leonard Nunney [11], the complexity of genetic control
over unregulated cell growth should depend on a tissue’s size and its pattern of proliferation.
He showed mathematically that the levels of somatic mutations in small and large animals are
so different that there is not a mechanism to prevent cancer in one that would be evolutionarily
stable in the other. Furthermore, within species, lineage selection suppresses cancers causing the
greatest loss of fitness (which may be tissue specific) [11]. Because only the germline genome is
passed on to an individual’s offspring, deleterious mutations in it often cause a greater reduction
in fitness than somatic cell mutations. In fact, the somatic mutation rate in both mice and
humans is almost two orders of magnitude higher than the germline mutation rate [12].

Based on this biological evidence, we believe that natural selection pressures caused the
evolution of cancer suppression mechanisms in natural multicellular organism. Next, we sought
to replicate these pressures in Avida 4’s evolutionary computation environment.

3 Approach

Based on this existing literature, the goals of this project were as follows:

1. Update Avida 4 to allow single cells contained within multicells to replicate over one
another.

2. Run the program on MSU’s HPC.

3. Analyze the results for evidence of multicells evolving restraints on cellular reproduction
that reduce or eliminate the chances of a single cell “going rogue” and wiping out the
multicell.
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Group competition:A replaces B
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Figure 1: By performing 5 types of tasks instead of 2, group A is able to replicate over group
B [1]

3.1 Avida 4 Digital Evolution System

In the Avida 4 system, digital organisms compete for space in the environment. Each
organism is a fully functional computer program, set up as a circular list of instructions, and a
virtual CPU that executes the instructions. These instructions make up the digital organism’s
genome and determine its behavior [1].

In order to self-replicate, the genome includes a sequence of instructions to create an off-
spring. This emulates asexual reproduction in the natural world. When a digital organism
reproduces, a neighboring location is selected from the environment to place the offspring, and
(if overwriting is allowed) any previous inhabitant of the target location is replaced (killed and
overwritten). If overwriting is not allowed and the location is already occupied, the copy oper-
ation is canceled. Copy mutations (substitutions, insertions, and deletions) may occur during
the replication process, leading to offspring that are genetically distinct from their parent [1].

The genome of a digital organism can include a variety of different instructions from the
Avida instruction set. The instruction set is set up so that any combination of instructions is
a syntactically correct program (though it may not perform any meaningful computation). It
includes several instructions to facilitate distributed problem solving and transmit epigenetic
information to offspring [1].

The rate at which an organism’s virtual CPU executes its instructions is determined by the
organism’s metabolic rate. An organism can perform a bitwise Boolean logic operation on 32-
bit integers to consume resources that increase its metabolic rate. Performing NOT or NAND
doubles the organism’s metabolic rate, AND or ORNOT triples the metabolic rate, and OR
quadruples it. An organism may only receive a reward for performing one task. For example,
a digital organism could not be rewarded for performing NAND and subsequently be rewarded
for performing ORNOT [1].

Multicells are groups of digital organisms (cells). They compete with other groups and
replicate via tournament selection. The inter-tournament period length determines how often
this takes place. Within each tournament, the group that performs the greatest variety of
tasks is replicated to the next group-generation. However, a group may only replicate if it has
accrued resources equal to or greater than the group replication threshold value [1].

3.2 Avida 4 Configuration

Avida 4 uses two large C++ library sets: EALib and Boost. EALib is a series of C++
libraries for building evolutionary algorithms [13]. It includes Boost as a dependency. Boost is
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a set of open-source C++ libraries for general development [14]. It is notoriously difficult to
install (C. Ofria, personal communication, 2019), and doing so caused significant development
delays during the project.

Once Avida 4 was installed, the initial configuration was set to that used in The Effect
of Conflicting Pressures on the Evolution of Division of Labor [1]. Each run contained 1000
5-by-5 multicell grids initially seeded with one cell each. The group replication threshold was
set to 500 in the first run. For both the control group and the treatment group, 300 runs were
conducted, each lasting one million updates.

00

Empty Space Occupied Space
both groups can reproduce only treatment group can reproduce

Figure 2: Tissue accretion (cell reproduction) in the control and treatment groups. Only
treatment group cells may overwrite living cells.

In the control group, individual cells within a multicell could not overwrite existing cells.
When they execute their copy instructions to reproduce, the program checks if the adjacent
square they are facing is occupied by a living cell. If it is, the instruction is not completed.
This programmatically prevents this type of rogue cell behavior.

In the treatment group, overwriting neighboring cells is permitted. This allows cells to
replicate over a neighboring cell, even if it is still alive. Overwriting existing cells is a type of
rogue cell behavior, since it increases the cell’s fitness without increasing the group’s fitness.

The first run revealed slight difference between the control and treatment groups, but not
enough to understand what was going on. Therefore, in the second run, the group replication
threshold was increased to 1000 to increase the pressure on multicells to accrue more cells within
their grids, and the runs lasted two million updates to allow the time to do so. The results
were startling, showing data that could not be possible if the Avida 4 program was working
correctly.

A bug was found in the Avida 4 code base that was affecting the random number generators
used by the digital organisms. Luckily, the bug had been injected after the most recently
published paper, so no publications had to be redacted (H. Goldsby, personal communication,
2019). The data generated for this project was discarded, and a third run was constructed with
the corrected Avida 4 program.

In the third and final run, the group replication threshold was set to 600, because 1000 in
run two appeared to have been too high for the groups to evolve multicellularity. The runs
still lasted two million updates to give the multicells time to evolve cancer-like behavior and,
hopefully, restraints on it.
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Figure 3: Cancer-like rogue cell behavior is shown in the mean number of overwritten cells
compared to the mean multicell size. The number of overwritten cells peaks at over 350 before
the multicells are able to evolve restraints on rogue cell behavior. The number of overwrites
then drops dramatically.
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Figure 4: Compared on the same graph, the same cancer-like behavior can be seen in another
run, evident in the spike in overwrite numbers. The mean multicell size is does not change
enough to explain the rapid decline in the number of overwrites.

4 Results

In the third run, there was not a statistically significant difference in how often runs evolved
multicellularity between the treatment and control groups . Both evolved multicellularity in
about 3 percent of the runs (9 out of 300 in the control group and 10 out of 300 in the treatment
group). Cancer-like behavior was observed in eight of the ten treatment group runs that evolved
multicellularity. Figure 3 depicts one such run.

In Figure 4, the multicell size only drops from 16 to 8, while the number of overwritten
cells drops from over 350 to about 20. This dramatic decrease is evidence that the multicells
evolved some form of restraint on multicellularity that inhibits rogue cell behavior. How this
restraint is achieved is a question that should be addressed in future work.

Two of the ten runs that evolved multicellularity did not evolve strong evidence of cancer-
like behavior. They both had a smaller mean multicell size and evolved multicellularity later
than the other multicellular runs. For example, Figure 5 shows a run in which the mean number
of overwrites peaked around 30, and the mean multicell size stayed in line with the number of
overwrites.



Katherine G. Skocelas
Page 6

Mean Number of Overwritten Cells vs Multicell Size

30 { = Mean Number Overwritten
Mean Multicell Size

25

20

15 1

10 1

Number of Cells

0 2500 5000 7500 10000 12500 15000 17500 20000
Update

Figure 5: Two runs evolved multicellularity but did not show strong evidence of cancer-like
behavior as evidence by a low mean number of cell overwrites.

5 Conclusion and Future Work

Avida 4 is accepted by both the biological and evolutionary computation communities as a
representation of evolution [1]. It has been successfully used to study the major evolutionary
transition from single- to multicellularity thanks to the ability it grants researchers to explicitly
define and measure the digital organisms, environment, and evolutionary pressures such as the
group reproduction threshold and tournament size [1]. This project shows promising evidence
of the evolution restraints on multicellularity in 2.67% of the treatment group runs. More and
longer runs are necessary, however, to get enough data to be statistically significant.

Increased data collection and an improved data analysis pipeline is also necessary to distin-
guish advantageous from disadvantageous overwriting. Questions to investigate include:

If a cell is surrounded, does it stop replicating?

How much of the observed behavior is limits from resources vs. limits on multicellularity?

Why do some runs evolve cancer-like behavior and others do not?

Is there a difference in restraint shown between germ and soma cell overwrites?

What restraint techniques are used?

During the experiment, two unexpected findings arose that did not appear to directly relate
to the evolution of restraints on multicellularity, and thus were not explored in depth. First, the
control group did not evolve higher levels of multicellularity than the treatment group, despite
not having to contend with potential rogue cell behavior. When the control group’s group
replication threshold was 500, about 10% of runs evolved multicellularity. In the third run,
however, when the group replication threshold was 600, only 3% of runs evolved multicellularity.
We expected the increased group replication threshold to increase, not decrease, the percent
of runs that evolve multicellularity. Future work should manipulate the evolutionary pressures
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and lineage tracking to examine why this is not the case, and why programmatically prohibiting
rogue cell behavior does not provide any apparent boost in the ability to evolve multicellularity
(under the current conditions).

Second, the Avida 4 program began using more than twice as much memory per run when
additions were made to track cell births and overwrites. Future work should investigate a
potential memory leak. If it does not appear to be an error in the code, it is possible that
the cells are utilizing communication instructions more frequently as part of their reproduction
management strategy. Data collection should be added that tracks message passing between
cells to examine how they are being used. Ideally, in either case, the code should be updated
in a way that reduces the memory required for each run.

Studying evolution in action using digital organisms gives us the ability to understand the
natural selection pressures that cause the evolution of cancer suppression mechanisms. This
work is relevant to the fields of biological evolution and evolutionary computation, as well as
veterinary and human medicine. The promising results from this project are therefore being
built upon with research that hopes to further understand the evolutionary pressures at work
and the evolved restraints on multicellularity.
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On the Study of Digital Evolution: Definition, Process, and
Application

by Santiago Rodriguez Papa

I have been working at the Michigan State University Digital Evolution Laboratory for almost
two years now. I was initially hired as a software development assistant—basically, I was to
aid graduate students in their research by helping them design, develop, and debug their code.
Some might find this counterintuitive, but while I had relatively good experience with C++,
Javascript, Python—the three languages used in the laboratory—and a strong background in
programming for my age, I had little-to-none experience with digital evolution. This is not to
say I was unfamiliar with the general concept, but rather that I was not knowledgeable in its
terminology, main theories, or real-world applications. Over time, I became much more
knowledgeable and involved in the field. This report will focus on defining the field, explaining

the process by which we study evolution, and finally giving some real-world applications.

Most people have a relatively good idea of what evolution entails. However, the general public
often misunderstands certain key concepts that are invaluable for comprehending digital
evolution in particular and evolution in general. Evolution is, at its core, an intergenerational
(read, long-term) process by which species adapt to their environment. (MacColl, 2013). This
process is fueled by natural selection, a mechanism by which the genetic makeup of a
population is changed within a generation (MacColl, 2013). In order for natural selection to
occur there must be selective pressure—that is, an outside influence that steers the population

1n a certain direction.

The most well-known example for selective pressure is the story of the short-necked giraffes.
The tale begins by explaining that, once upon a time, giraffes used to have normal-length necks.
They would roam the steppe eating leaves from ground-level bushes and short-trunk trees. One
day, a fire wiped out most of this dwarf fauna. As such, the giraffe population soon ran onto

the problem of not having enough food to sustain itself. It was observed that after some



generations, the dwindling population began to grow in height. Soon, the giraffes grew taller

on average and the whole population got access to a new source of food: tall trees.

While of course this not how giraffes originally evolved their tall necks, this example serves
as a clarification to some common misunderstandings. At first, the giraffes’ average height
resided somewhere between the low and high trees, and the height distribution could be
depicted by a bell curve. After the fire, however, the lower end of the bell curve was unable to
secure food and thus reproduce, so their “short genes” were passed on less often; we say these
short giraffes had lower fitness. On the other hand, the giraffes on the higher end of the normal
distribution did have access to a reliable source of food, so their genes were passed on; these
individuals had higher fitness. Since before the fire, the population height had a normal spread,
we can assume that the mutations that affect a specimen’s height are also normal. However,
the selective pressure made it so that only the high fitness individuals could survive, and as

such, the spread skewed right.

While it might seem counterproductive to define so many ecological terms in a report about
“digital” evolution, I promise it is not in vain. The field borrowed the majority of its terms
from biology, so it is imperative to be familiar with them. In fact, ecological and digital
evolution are so closely related that, in their 1999 paper, Adami et al defined digital evolution
to be the use of a computational medium in order to study evolution in action. It could thus be
argued that both fields study the same thing from different perspectives; ecology focuses on

biological records, and digital evolution on computational ones.

In a later paper, the same authors also argue that, while traditional methods for its study focus
on an a posteriori, indirect analysis of fossil records and sedimentary patterns, the use of a
simulated virtual environment allows for a faster and more direct approach centered on testing

generalizations about living systems (Lensky et al, 1999).

Indeed, the primary use of digital evolution is to study real-world evolution at a scale not
possible in real life. Since the speed at which the virtual organisms reproduce—and thus mutate
and evolve—is only limited by how fast the simulation can run, we can study evolutionary

effects that we otherwise would be unable to.




When asked about what I do, I often joke that I work with Digimon. Honestly, this is not all

too inaccurate—my job is probably the closest we will ever get to that franchise. After all, the

study of digital evolution can only be accomplished if there are digital organisms that evolve.!

These digital organisms are also known as artificial life’ (Lenski, Ofria, Pennock; 2003).

In our studies at the laboratory, we define digital
organisms to be programs that execute basic
machine language instructions. Most of these
instructions are commonly found in every CPU—
think ADD, POP, JMP—others are only relevant
to our field of study—things like REPRODUCE
or GET RESOURCES. As you can see, these
programs are very similar to real-life organisms:
they have genetic code that allows them to
interact with their environment, reproduce, and
die—this is all you need to fulfill the definition
of life! In a way, you could say these beings are
alive, just in a different way than real-life

organisms.

o
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Figure 1. A randomly initialized digital world.

! Without organisms nothing can ever evolve, as evolution involves change within a population.

2 Not to be confused with Artificial Intelligence.



To study evolution, we utilize a finite-sized world.
Initially, this world is fully populated by cells with

randomly generated code [Figure 1].

In evolutionary ecology, there are different
moments in time considered to be key in the
evolution of life as we know it—these are known as
major transitions in individuality (Stuart et al,
2015). Commonly, they include things such as the
grouping of aminoacids into genes, the cooperation
of genes to form genomes, the transition from
prokaryotic to eukaryotic cells, and the cooperation
of unicellular organisms into multicellular ones.
With Matthew Andres Moreno—current doctoral
student and my direct supervisor—we have been

studying this last transition.

In order to do observe the evolving cells in a user-
friendly manner, we visualize the different filial
groups with different colors. As such, initially, the
organisms are single-celled individuals. This fact
can be appreciated in Figure 1 since no square shares

colors with its neighbors.

On each update, one instruction of code of each
individual cell is run. If REPRODUCE is reached,
the cell chooses a random neighbor to overwrite.
Cells can communicate with each other through the
sharing of resource (Moreno and Ofria, 2019). Over

time, some cells will die, while others will reproduce

Figure 2. The same world as Figure 1 after 5000
updates. Some multicellular organisms can be observed,
bottom-center and top-right. Black squares are cells that

experienced apoptosis.
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Figure 3. The same world as Figure 1 after 10000
updates. Many multicellular groups can now be observed,
particularly top-right and bottom-center. The fact these
groups are separate shows the transition to multicellular
life occurred multiple times.

and cooperate—when this happens, we are observing the transition from unicellular to



multicellular organisms. This can be appreciated in figures 2 and 3. This transition happens

repeatedly and in different parts of the world, akin to real life (Eiben and Smith, 2013).

We have answered both how and why we want to study digital evolution. We have also
discussed its main application: digital evolution is used to study evolution in action. However,
we have yet to discuss some of its secondary applications, which are more relevant to the field

of Engineering.

The main secondary application of digital evolution is the development of algorithms. Every
engineer is familiar with the concept of an algorithm: an ordered set of instructions that are
executed to fulfill a certain task. However, the development of these algorithms varies. While
most choose to either use previously engineered algorithms or to design their own, there is a

growing concept in the field of Computer Science called evolutionary algorithms.

An evolutionary algorithm is defined to be the application of natural selection to develop some
desired emergent behavior (Eiben and Smith, 2015). The software engineer must have a
specific goal in mind (for example, to approximate a given set of points on the plane). After
defining the goal, the programmer develops a fitness function to test the population against (in
this case, it could be the mean squared error between generated data and known data). Finally,
a population is randomly generated and the simulation is started. After a set number of updates
has elapsed, the specimens’ finesses are measured and a group of them is chosen with a defined
selection scheme. This is repeated until the fitness of the population reaches the desired level.
At the end, the population is composed of individual algorithms that can effectively solve the

original goal.

This idea of competing algorithms against each other has many uses in the world of Computer
Science. To those familiar with the topic, the previous description might seem strangely similar
to the method in which Neural Networks are generated. Indeed, the fields of Digital Evolution
and Neural Networking are closely related. For example, evolutionary algorithms have been
successfully utilized to construct recurrent neural networks (Angeline et al, 1994). In fact, [ am
currently conducting independent research on the use of digital evolution to generate highly

accurate neural networks in a shorter amount of time.



In conclusion, the field of digital evolution is wildly diverse and unique. This intersection of
Biology, Ecology, and Computer Science might seem strange at first glance, but a closer look
reveals a growing group of researchers that are revolutionizing how we understand evolution,

computation, and ecology. I am extremely thankful to be part of it.
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The role of Evolutionary Biology in Artificial Intelligence and Alife

Introduction

Since its advent, Artificial intelligence has continually taken influence from Biology.
However, key biological processes remain underappreciated for their potential in solving
complex problems, due to a lack of collaboration between the two very distinct fields. For
both biological and artificial life, finding the best solution involves navigating a highly
dimensional, and often dynamic, fitness landscape. Hill-climbing techniques can result in
stagnation at local optima, and variations of random search can be equally as ineffective at
locating high performing regions. But nature continues to complexify, lending inspiration in

tackling the most ambitious goal in Al: the creation of Artificial General Intelligence.

Combining Learning and Evolution

ANNSs, which are commonplace in modern Al, superficially model the interactions between
real neurons in the brain where the strengths of synaptic connections encode knowledge and
experience !. In Al, these connections, or weights, are adjusted based on their error from the
desired performance %, working similarly to how intrinsic rewards systems modify synaptic
weights in animals 3. The development of ANNs caused a lot of initial excitement but it was
soon realised to have limited success in producing the complexity of human cognition. Brains
have been optimised over millions of years of evolution to have a stereotyped connectional
architecture which forms the basis for learning. The product of this evolutionary optimisation
is the diverse range of abilities animals are born with such as walking at birth or basic
capabilities we take for granted such as objectness. Whereas conventional ANNSs rely on just

learning, resulting in a number of deficiencies *.



Genetic Algorithms (GAs) work by simulating survival of the fittest. Populations of
bit strings, each representing a solution, evolve and occasionally mutate and only the fittest
solutions can mate and propagate to the next generation >. Mating works similarly to
crossing-over in meiosis; a random point along the string is selected and bits are swapped
creating two new offspring. Closely adjacent sequences are less likely to be separated by
crossing over, like in genetic linkage, so tend to be synergistic and form partial solutions, like
genes. Recombination of good partial solutions enables the search to ‘jump’ between optima
focusing on the most promising parts of the search space, while purging poor partial solutions
which would otherwise accumulate ®. Neuroevolution applies GAs to adjust the weights of
ANN:Ss in place of backpropagation. A GA evolves a population of bit strings which
represents the connection weight matrix of an ANN. The fitness of the bit strings are
determined by the performance of their resulting ANNSs at a given task. Neuroevolution
emerged in the 90s " and GAs are now argued to be a competitive alternative to
backpropagation 8.

Just as pure learning has its deficiencies, so does pure evolution. Hill climbing
techniques such as backpropagation enable a local optimum to be reached but the global
optimum may never be discovered. In contrast, pure evolution is more likely to locate the
region of a global optimum but won’t necessarily locate its peak because it does not directly
follow a local fitness gradient. As such, these approaches are complementary, just as in
nature. Evolution shapes the fundamental innate behaviour based on the experiences of
ancestors, and learning optimises it so it can best be used — as the precise conditions and
events experienced by each individual in a lineage will differ subtly. Coupling evolutionary
algorithms with deep learning strengthens this analogy with nature and exploits the best
qualities of each approach. This may be done by using GAs to evolve the general structure of

the ANN and training with backpropagation to fine tune the parameters.



Evo Devo and Indirect Encoding

For common Al be it deep learning or neuroevolution, learning occurs directly on the
parameters of the ANN. In contrast, the human genome holds only 1.5GB of information; this
is not enough to direct encode the trillions of synaptic weights in the brain, let alone the entire
organism. However, the genome does not explicitly encode the body map of the organism, it
encodes its development. The result is an organism that has modulated repetition with
variation. For example, most multicellular organisms display some form of symmetry and
numerous features which are derived from a single innovation, e.g., insect appendages:
wings, antennae and mandible, are all variations of the leg appendages. This property enables
coordinated evolution of structure and behaviour.

HyperNEAT ? incorporates indirect encoding into Neuroevolution to evolve perfectly
coordinated walking gaits of simulated creatures. Like in classic Neuroevolution, Populations
of bit strings evolve, mutate and mate. These bitstrings do not encode the weights of the
functional ANN as in classical Neuroevolution, but they encode the weights for a
Compositional Pattern Producing Network. The output of this network is a geometric pattern
with repeating motifs, and it is the coordinates of this pattern which encodes the weight of the
functional ANN. The resulting ANN is able exploit regularities in a problem; for example,
HyperNEAT can automate the evolution of highly coordinated four-legged gaits '°, which has

only previously been possible with manual decomposition of the task.

Group selection and a division of labour

From a genetic to a societal level, group selection has repeatedly resulted in major evolutionary
transitions. For example, the eukaryotic cell arose from a proto-eukaryote’s engulfment of and
subsequent mutualism with a prokaryote which became the mitochondria. The reproduction of

the mitochondria eventually depended on the reproduction of the eukaryotic cell and vice versa



1. Due to their aligned reproductive fates, there is a selection for cooperation and this manifests
in a division of labour — the mitochondria provide optimal conditions for aerobic respiration
and the host capitalises on this while providing the energy and resources required. This example
of cellular compartmentalisation enables much greater efficiency within the cell and facilitates
further beneficial variation '2,

At the genetic level, information is encoded in linear DNA sequences composed of four
bases. Although having a simple linear structure, sub-sequences encode higher-level functional
elements such as genes, and these are further grouped together into chromosomes that
ultimately make up the final genome of an organism. Each component in this hierarchy has a
distinct role in synthesis and the proliferation of the others and so success requires cooperation
between them '*. A similar phenomenon also occurs during the evolution of GAs where
bitstrings are used to encode the genome of a potential solution. Crossing over allows for partial
solutions to become localised within a string such they can propagate effectively. These sub-
sequences can then be further combined at larger length scales establishing a hierarchy of
modularity even within this simple system. By viewing a complex task as a collection of
smaller interacting subtasks, it is possible to tackle larger problems in smaller chunks,
facilitating search in even highly deceptive spaces. Because of this, genetic algorithms have
been found to better tackle tasks with complex fitness landscapes compared to ANN-based
deep learning approaches.

At higher levels of organisation, social groupings are common between organisms (e.g.,
parental care, herds and flocks). There are many benefits to group living. An extreme example
of this are the eusocial insects whose colonies form what are termed a ‘superorganism’. These
colonies are composed of distinct castes — such as queens, workers, and soldiers — which are
morphologically and behaviourally specialised to their task. In Al, a problem can be tackled

using multiple cooperating agents if fitness can be measured by the sum of their behaviours.



For example, OpenAl created a human-relevant example of how this works using a game of
hide and seek '*. Pairs of seekers played against pairs of hiders where each is controlled by its
own ANN. The hiders worked together to build a shared wall around themselves before the
seekers finished counting. Once the seekers discovered they could use ramps to breach the wall,
the hiders exhibited a division of labour where one began constructing the wall while the other
confiscated the ramps — a strategy that would have be impossible by either alone due to
countdown time limit.

The hierarchy of modularity in current artificial systems is modest compared to that
found in biology. In nature, group selection occurs on numerous levels simultaneously,
establishing an extensive hierarchy of task decomposition which scales with complexity
covering genomes, endosymbiosis, cell compartmentalisation, multicellularity '°, tissues and

6 social groups, and inter-specific mutualisms !’ to name a few. In

organs, organisms, sex '
effect, a complete ecosystem also exhibits modularity through niche differentiation, which

operates to reduce competition.

Complexification

A few billion years ago, life began simply — morphologically, behaviourally and genetically
in a simpler environment and with little competition. From then on, the elaboration of
genomes enabled new behaviours and structures. This adaptive radiation of life has created
multiple kinds of organisms with different metabolic processes occupying different niches.
As these organisms interact with their environment, they cause changes opening up new
niches for further diversity to arise. This leads to a continually growing web of interactions
with multiple trophic levels. Conventional evolutionary computing infamously lacks this
open-ended quality, usually halting as it stagnates at a final solution. Often, evolutionary

computing techniques involve a single static selection pressure based on the performance of



the task of interest. Yet the complex behaviours we are interested in recreating in Al such as
language are the product of gradual complexification, rather than an explicit selection
pressure for language in isolation.

Novelty search has shed light on the shortcomings of this conventional approach '*.
Behaviours are selected based on their uniqueness rather than their performance, and once the
search for the simplest behaviours is exhausted, more complex behaviours are generated,
promoting diversification and complexification. The selection for novelty occurs in adaptive
radiation, where species differentiate and specialise into niches to reduce competition. In a
biped locomotive task, novelty search significantly outperforms fitness-based approach
despite being agnostic about what behaviour is adaptive for walking. This study highlights
the deficiency of using a single fixed selection pressure based on task performance — by
ignoring the objective, it’s possible to explore deceptive domains associated with the task
fitness.

The evolution of the brain in particular, from smaller primitive brains to complex
ones, inspired the development of ANN topological complexification in Neuroevolution of
Augmented Topologies (NEAT) . ANNs evolve from minimal architecture and, in addition
to adjusting the weights, mutations affect the topology of the network by adding new nodes
and connections. Therefore, optimisation occurs simultaneously with complexification,
mirroring how our brains evolved from primitive smaller ones, or how mature brains develop
from limited-capacity infant brains 2°. NEAT significantly outperforms neuroevolved ANNs
of fixed topology in pole balancing, a standard benchmark learning task. In addition, the
evolution of topology eliminates reliance on humans to choose the most appropriate topology
prior to evolution.

A major drive for complexification is antagonistic coevolution. Predator and prey, for

instance, perpetually create new selection pressures for their counterparts. A famous example



of this is the arms-race between bats and eared moths 2!. The ability of bats to locate moths
using sonar clicks drove the evolution of sonar detection in moths. This was followed by bats
altering the intensity and frequency of their sonar click for stealth. Moths then evolved their
own sonar clicks to ‘jam’ the frequency of the bats. Such arms-races are never-ending, a

phenomenon known as ‘the Red Queen Principle’ 2

, and result in individuals constantly
adapting to keep up to new innovations. The same phenomenon occurs with artificial
systems, with more sophisticated behaviours evolving and more swiftly 2.

A factor often overlooked in robotics which limits complexification is the evolution of
morphology, i.e., there are a limited number of behaviours possible with a single fixed
morphology. Behavioural adaptations often depend on physical adaptations. Simultaneous
evolution of morphology and behaviour 2* opens up a vast possibility of phenotypes to be
explored compared to using a single fixed morphology 2°. One way to capture this feature in
ANNS is by employing Compositional Pattern Producing Networks which enable the
structure of an ANN to dynamically evolve and explore potentially useful topologies for a
task at hand °.

Complexification occurs not only with evolution but also due to learning within the
lifetime of an individual. Humans and other animals learn most efficiently if they begin with
simpler tasks and gradually expand their knowledge and skills ?’. For example, musical
students begin practice at grade one and slowly progress before attempting a grade eight
piece. This is so necessary in producing complex cognition that it is effectively ‘built in’ to
cognitive development: the initial cognitive limitations and slow development of some
animals, particularly humans, is thought to be adaptive to facilitate incremental learning
during early life, rather than just being an artefact of incomplete development 2. For
example, infants are only able to focus on objects ~10 cm away, allowing them to learn from

simpler sensory information without the complication of size inconsistency and distance. This



form of gradual learning can be applied to Al too: two pure-learning ANNs which play Go
against one another both begin at novice level and gradually become more skilled as they
play, learning better strategies and faster than if they trained against master opponents to
begin with. A major benefit of self-play is that it eliminates the need to obtain human game
data across a range of skill levels or the need to spend time playing against humans in real-
time, which is slow and limited in scope.

It is likely that the combination of multiple kinds of complexification is necessary for
open-ended evolution %°. For example, implementing just competitive coevolution alone can
cause stagnation due the loss of the Red Queen gradient, where one species discovers a
strategy so strong that it cannot be beat by an opponent. Whereas, when paired with
topological complexification, the space of possible behaviours continually broadens, helping
to establish an effective open-ended arm-races **. Complexification is particularly effective
using HyperNEAT because, as the problem is solved geometrically, the solutions are
scalable. Gauci and Stanley found that HyperNEAT-evolved ANNSs that first learn to play the
board game Go on a 5 X 5 board could subsequently learn faster and discover better strategies
when then faced with a larger 7 x 7 board 3'.

By starting small, task performance can be optimised in a simple fitness landscape,
and then by gradually complexifying the Al the solution enters larger search spaces in more
promising domains than it would otherwise have starting there. Plus, these approaches
eliminate reliance on manually designing progressively more complex training tasks, as is

necessary in conventional ‘incremental evolution’.

Conclusion
The prospect of building AGI depends upon our ability to create systems which can work in

an autonomous, innovative, and open-ended way — much like biology. Here I have discussed



how evolutionary techniques, provide an attractive solution to achieving these qualities,
inspired by the origin of animal intelligence. Key biological concepts continue to inspire
advances in Al, suggesting that the pursuit of AGI would benefit immensely from the active

involvement of Biologists in the field.



Chapter 8

Submission 8: Tanaka

7



100 years of Capek’s Robots

ALife 2021 - Student Essay Competition

Fabio Henrique Kiyoiti dos Santos Tanaka

In 1921, the English language was introduced to the word "robot” for the first time
when Czech author, Karel Capek, released his theater play R.U.R. (Rossumovi Uni-
verzalni Roboti). Today, 100 years after it has been published, its influences can still be
perceived in science-fiction literature and in the vision of the future regarding robots.

In the play, robots are mass-produced to handle manual labor. While some organi-
zations fight for these artificial beings’ rights, the robots themselves do not show any
complaints or wants of their own in the beginning. As time passes, factories start pro-
ducing more advanced robots, and their use shapes the world economy; not before long,
they handle humanity’s every need.

In the play’s final acts, these more advanced robots start questioning why they should
serve humankind and, because of that, they begin an uprising. After eliminating all but
one human and taking control of Earth, the only thing the robots lack is the ability
to reproduce, a secret that was lost during the extinction of humanity. The play ends
when two of the robots, when faced with the death of each other, start to demonstrate
affection between themselves and the last human says that this may be the secret for
reproduction and that they would serve as the Adam and Eve of this new civilization.

This event leads to the robots inheriting Earth as the successor of humanity.



It is important to note that, contrary to the current concept of the word, the robots
in the play are less of a mechanical machine and more of an artificial biological creature.
Factories for bones, nerves, arteries, and intestines are described in the story, and the
process of assembly is compared to the one of an automobile. Capek’s robots are living
biological beings, but they are still assembled instead of grown or born.

While this narrative was the first document to introduce the word "robot” to our
dictionary, other automatons existed in the literature for centuries. In Greek mythol-
ogy, Hephaestus, God of metallurgy and craftsmanship, constructed a giant man made
of bronze to defend the island kingdom of Crete. In Jewish folklore, the Golem, an
anthropomorphic being made of clay, could work as a servant or protector of its people.
While there are many different versions of these tales, they both tell a story of con-
structs that follow humans’ (or God’s) instructions to complete the manual tasks they
were designated to do.

Maybe, the story that this play resembles the most is Mary Shelley’s "Frankenstein”,
the novel considered by many as the pioneer of science-fiction. While R.U.R. and
Frankenstein were written more than 100 years apart, both narratives tell the story
of humans trying to create an artificial life form and the flawed relationship that arises
between the creator and its creation. In the end, both conflicts end with the death of
the creators and the regret for trying to create life.

Despite the themes of these possible inspirations, R.U.R. acts as a cautionary tale
for the blind search for progress, and if you consider the time it was written, it is not
difficult to understand the reason. World War I have ended only a few years prior,
and its impacts were still being felt. The idea that humankind would only benefit from
technological progress was heavily contrasted by the newly developed mechanical and
biological weapons used in the conflict. This post-war society may be one of the reasons

for the author’s skeptical attitude towards technological progress.



During an interview to the London Saturday Review, Karel Capek wrote: "I wished
to write a comedy, partly of science, partly of truth. The odd inventor, Mr. Rossum, is a
typical representative of the scientific materialism of the last century. His desire to create
an artificial man — in the chemical and biological, not the mechanical sense — is inspired
by a foolish and obstinate wish to prove God unnecessary and absurd. Young Rossum
is the young scientist, untroubled by metaphysical ideas; scientific experiment to him is
the road to industrial production. He is not concerned to prove but to manufacture...
Those who think to master the industry are themselves mastered by it; Robots must be
produced although they are a war industry, or rather BECAUSE they are a war industry.
The product of the human brain has escaped the control of human hands. This is the
comedy of science.”

Another theme discussed in the play is the status of robots in human society. During
the narrative, the artificial humans are often referenced as slaves or serfs that lack the
essence of a human being, a soul. This dehumanizing description is not too different
from how some slave-owners would describe their slaves. It could be argued that the
robots uprising in the play was influenced by the many revolts of slaves and serfs that
can found in history. It is not a coincidence that the name "robot” is based on a Czech
word for "forced labor.”

This parallel with human history can also be perceived in one of the proposed solutions
to deal with the threat of robots during the play. When the characters thought the
revolt had been suppressed, one solution to avoid future conflicts was to start producing
"national robots”. Each robot-producing factory would make robots with diverse colors,
hair, and languages; the reasoning behind this was that the robots would be strange
to each other and would not only be unable to cooperate between them but even hate
the different robots. This solution was most likely inspired by the recurrent conflicts

between people of distinct races, cultures, or nations throughout history.



Now, changing the focus from the influences to Karel Capek writing to the impacts
it caused on the media, its effects are evident until this day, 100 years later. The in-
troduction of the word "robot” to the English dictionary is the most notable. Although
the original use referred to the mass-produced artificial biological humanoids, the Cam-
bridge Dictionary defines it as ”a machine controlled by a computer that performs jobs
automatically”. This word not only functions as a technical term, but its expressiveness
can instigate the imagination of many people.

Another contribution of this work was its influence on stories that revolve around
a robot or A.l. taking over. Arguably, this play was the first to tackle the idea of a
human creation losing control and overpowering humanity on a global scale. Although
the themes or delivery of this concept may differ, many works stay true to this formula
to this day.

In contrast, Isaac Asimov, one of the most celebrated science-fiction writers of all time,
was a fierce critic of Capek’s work. While he recognized the importance of introducing
the word "robot” to the global lexicon, he considered the play terrible. But, at the
same time, it is possible to argue that R.U.R. had at least some influence on him when
he coined the term "Frankenstein complex” to describe humanity’s fear of machines
rebelling against their creators (alongside the evident inspiration from Mary Shelley’s
"Frankenstein”). His famous laws of robotics served as a prevention system to avoid a
future like the one present in Capek plays, where human’s creations revolt against their
masters, from happening.

Nowadays, this "Frankenstein complex” is still very present in society. From big box
office movies like Marvel’s ”Avengers: Age of Ultron” to popular games like Valve’s
"Portal”, different media approached the idea of a robot becoming self-conscious and
revolting against humans. Recent developments in A.I. technology are also a source o

worry for many people. Even famous scientists like Stephen Hawking have voiced their



concerns about the advancement of this type of technology.

Even though 100 years have passed since R.U.R. publications, the reasons for skep-
ticism towards these advancements are arguably the same. They are often based on
human history and the numerous conflicts and incidents present in it. Although this is
a valid point of view, learning from the past when planning for the future is a charac-
teristic of humanity, there is no foundation to affirm that a sufficiently advanced A.I.
would act in an antagonist manner and oppose human beings.

Thinking that if an A.L. keeps evolving, it would inevitably start acting like humans,
sounds arrogant because it poses humanity as the final or necessary step in evolution.
While competitiveness and aggression are commonly thought of as required for survival
from an evolutionary perspective, there are also many examples in nature where cooper-
ation wields more fruitful results. It is not even assured that if an A.I. became self-aware,
its goals would conflict with humans.

Of course, this is not to say that precautions should not be taken. While impractical,
Asimov’s laws of robotics are an example of how these measures are being considered
long before A.I. became a popular subject in science. If a potential risk has to be pointed,
deliberate ”"bad actors” using the technology is, and always has been, a concern. But
the risk of misuse is much as a problem for A.l. as any other advancement.

To conclude, while Karel Capek’s "Rossumovi Univerzalni Roboti” may not currently
be the most well-known science fiction story, its influences persist. It not just introduced
the word "robot”, but many of its themes are relevant to this day. While the possibility
of robots taking over the world is still up to debate, it is important to remember that
R.U.R. was the first narrative of this type and laid the foundation for this discussion

not only in literature but also in science.
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On why seeking Artificial Life

An essay by Roberto Gallotta

The field of Artificial Life is populated by many different scenarios and environments, spanning from
swarm robotics (Hard ALife) to chemistry simulations (Wet ALife). This is caused mainly by the fact
that the entire field is evolving, just as the subject of its study evolves. While all these scenarios have
interesting properties and applications, in this essay we will reason about one of the more appealing
facets of Artificial Life: the evolution of digital creatures in a simulated environment (Soft ALife).
Inspired by biology, these creatures are part of a population and evolve into different species, each
characterized by different behaviors when presented the same stimuli, while performing a given task
that determines their fitness. One important aspect of such evolution is its desired open-endedness:
the creatures should be able to evolve and show an ever-complexifying behavior, just like real life
evolved creatures have shown to do in the course of history. This behavior however is closely related
to the programmer-defined task. In general, we can say that the “life” component of this simulated

environments is the task itself.

There is a problem here: the task that we would like to solve has to be reflected in the environment
we are able to produce, but the environment cannot always faithfully reflect the task in its entirety or
in its full complexity. This is an obvious compromise between what we would like the creatures to
do and the limitations of the hardware these simulated environments run on. For example, while it
could be possible that a creature may learn to walk with a specific gait in an incredibly rich
environment where it could interact with other creatures, it would be superfluous: a simple plane with
no inter-individual interactions would work just fine for the task, though it clearly lacks the
requirements for open-endedness. This compromise also forces the programmer to introduce a bias
in the environment. Thus, it is safe to assume that the environment design is as important as the
algorithm that governs the evolution, if not more. While evolutionary algorithms may present
problems due to their complexity or errors the programmer did not or could not foresee, errors in the

environment lead to much more disastrous outcomes. A species may never evolve to a possible fitness



level or it may not be able to exploit emergent behavior, but we would still be able to gain insight to
its evolution and we would be assured that such insights are derived from an environment that reacts
to and interacts with the individuals as expected. On the other hand, if the environment is not carefully
crafted it could be exploited, effectively nullifying any effort to gain valuable insight from the
population’s evolved behavior. As an example, we could think of the aforementioned learning with a
specific gait task. An improper evolutionary algorithm may preclude some walking patterns from
emerging or from being kept down the individuals’ lineage. Instead, an error in the environment such
as a non-accurate physics simulation engine could be exploited, and the highest-fitness walking gait
may turn out to be to exploit such physic glitches. This is not an as uncommon phenomenon as one
may hope. The presented example is obviously an exaggeration of what could be a possible problem
in an environment and, while in this example it would be quite easy to spot such error and fix it, in
other cases similar errors may be very minute or non-trivial to spot. However, these would still affect
the evolutionary process in such a way that the resulting population’s behaviors reflect this error and
render observation incorrect at best and misleading at worst. Accepting the importance of a proper
environment, we can now assume that extreme care is taken in developing the best environment for

the task.

Now that we assume that the environment is always the best for the task, we can turn our attention to
the evolving individuals. We particularly look at their possible designs and limitations in such
designs. Just as for the environments, the individuals’ design complexity is limited not only by the
designer’s choices, but mainly by the computational constraints. The designer’s choices are an
obvious reflection of the task requirements, whereas the computational constraints are but a
temporary hurdle that could be overcome as technology progresses in both power and availability.
Both limitations, however, directly influence the observable behavior of the evolved individuals. It is
not farfetched to assume that a designer consciously modifies their original designs during
development due to the computational constraints. While it would be appealing to say then that those

computational hurdles are already integrated in the designer’s bias of their product, this is not always



the case. It is in fact entirely possible that an individual’s design for a specific task could work in a
feasible amount of time now rather than 30 years ago. For example, an individual whose behavior is
controlled by an evolvable artificial neural network would not have been implemented 30 years ago
because such design was simply not as efficient as it is now, so running a large number of generations
would have been unimaginable and, thusly, no study on the emergent behavior could have been
conducted. This phenomenon is widespread in the machine learning community as the “hardware
lottery”, where one solution to a problem can be found in practice thanks to the current level of
technology and available computation power and a different solution instead is less performing
because the current hardware does not support it as well as the other. However, while in the machine
learning field this just means that we must come up with different architectures that may just perform
sub optimally, in the artificial life field this means that a different design must be implemented, and
we have no assurance that we are not precluding any interesting behavior from emerging at any point
of the evolution. If our interest is the study of emergent behavior, then this problem is incredibly
concerning. This point, at least currently, is mainly theoretical as current computational power is on
par with common tasks requirements. If instead one encounters such a problem where their
technology cannot handle their design, it probably would be best to tune different parameters first,
such as the size of a population or other algorithm-specific parameters. It is then important to
distinguish between the types of possible individual designs. These can be divided in two main
groups: the first has a fixed structure and the evolution process simply controls the parameters within
it (think of a neural network where the architecture is fixed but not the weights and biases), the other
provides a set of base building blocks and the evolution process controls how many of these blocks
are there, their connections and their internal parameters (think of the networks evolved with
algorithms similar to NEAT). Although apparently different, both possible designs produce behaviors
that reflect the designer’s bias. In the first case this is more apparent, as the structure is handcrafted
and implemented a priori by the designer and any alteration to this structure results in different output

behaviors. The designer’s influence in the second case is slightly more subtle: one may think that



since the evolution process governs the structure overall design as well as its parameters, then the
designer’s bias is washed away and any emergent behavior is a direct result of the environment and
the algorithm that guides the evolution process. This is not the case: while on a larger scale the
architecture is constantly modified and mutated, its base blocks are not and changing these base
blocks would change the output behavior of the entire structure. One could argue that changing the
base blocks does not necessarily mean that some solutions may never be discovered, but the reality
is that we simply do not know a priori if that would be true or not. The same solution may be found
with a more complex structure that takes much longer time and resources to evaluate. It would be
interesting to experiment changing these base blocks in a domain and see what, if any, behaviors do
not appear anymore during the evolution. However, both approaches to designing the individuals’
architectures are viable and, depending on the task, one may work better than the other. The second
approach, however, is probably the more interesting for the artificial life researcher as it more closely

resembles biological evolution.

We have given motivations for carefully designing the environment and the individuals that will
evolve in such environment, so we can now pay closer attention to what could be the reason to do
research in the artificial life field. We first can see artificial life for the sake of artificial life: this is
when the goal of our simulations is to be able to run these simulations. This is the case for games that
give the user the options to control the evolution and then show the results as time goes on. A more
interesting aspect is instead that of determining how certain behaviors appear in communities of
individuals. This can be extremely useful for validating hypothesis on real life evolution of biological
creatures. While the overarching goal of artificial life exploration is to implement biological evolution
more and more accurately to solve tasks, it is also important to realize that such implementation may
never be perfect. This can be cause by a multitude of reasons, but the more prominent one is, as
explained in this essay in the previous sections, that computer cannot currently compete with nature’s

complexity. However, this is not a reason to be discouraged in seeking artificial life: any advancement



in this field is important since it allows us to better understand how we evolved to become what we

are now and how we are evolving to become what we will be.
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Do the Robots of the Future need

Artificial Imagination?
By Michael Vogrin

i

The intriguing question “Do robots dream of electric sheep™ served not only as a book title
for Philip K. Dick, but also further opened up the discussion of what possible “mental
processes” robots could be capable of. From science fiction novels to movies and video games
we find interesting explorations of this question. An elegant answer to this is hidden as a
throwaway line in the video game “Borderlands 2", where a voice talking to robots roughly
says: “Each robot who Kkills a monster, gets rewarded by getting implemented the capacity to
be proud to have killed a monster.”. This may lead us to believe that robots can do everything
that we implement. The question of this essay is: Could we, or should we, implement artificial
imagination into future robots? I want to argue two points. First, it is theoretically possible to
implement something into robots that resembles human imagination. Second, this capacity for
artificial imagination is neither necessary nor especially useful for robots.

Imagination is a special way of thinking. So, one might ask: Why should one think in the

first place? Alfred North Whitehead gives a concise answer:

il

“The purpose of thinking is to let the ideas die instead of us dying.

In this quote, Whitehead uses “us” to refer to humans, but the idea expressed in his
statement can be extended to other living beings, and - as [ would like to argue in this essay -
to robots as well. So how does thinking let ideas die, instead of us?

Imagine standing on a street, with the intention to cross the road. While doing so, it is

preferable to not get hit by passing cars. To solve this problem, one might rely on technology



like traffic lights, that - in conjunction with social rules - make crossing the road relatively safe.
Another way is to simulate the situation, to think it through, to let it happen in your mind's eye
- to imagine. If you can imagine yourself safely crossing the street without having to assume
unusual behavior of ongoing traffic (e.g., everyone perfectly stopping just for you, or cars flying
high above you to avoid a collision), you can indeed cross the street. But what if, you see
yourself getting hit by a car in your imagination? Then you would refrain from crossing the
street, and remembering Whitehead, you let the idea die, instead of yourself. Please note, that
this may not be how we usually cross the street, because we automated this process.
Nevertheless, we can use our imagination in this way. Could a robot do the same?

Imagine a robot on the road. Its task is to cross the road without getting hit by a car. Surely,
it would gather information using its sensors such as sounds and positions of nearby objects.
Usually, a robot would have a set of rules that enable it to react to information gathered by
sensors. In the road-crossing scenario, it would be sensible to estimate how long it would take
to cross the road. In the next step, the robot would need to check if there are cars approaching.
For this, it could “look™ left and right to see if there are cars in sensor range and estimate their
speed. Having this data, it is possible to calculate if the time needed to cross the street is shorter
than the time it would take the car to cross the path that the robot plans to take. Suppose a car
is approaching at such a velocity, that it would hit the robot and destroy it. Thus, the robot
correctly decides not to move. Now, did the robot imagine itself getting hit by a car while trying
to cross the street?

I would argue that it did not imagine itself crossing the street, at least not in the way a
human would. The robot produces some numerical values and reaches a conclusion, but at no
point imagines what would happen in the case of a collision. It does not consider if the driver
of the car would brake to avoid a collision. Neither does it take into consideration the possible
screeching of tires or shocked gasps produced by pedestrians. In contrast, this is exactly what

we humans would do. Clearly, one could argue that the robot did in fact produce an imagination,



just a less vivid one, or maybe one that is not visual. As humans primarily orient themselves
using vision (note the large size of the visual cortex) and robots may often be more
mathematical creatures, it seems natural to assume that calculations make up a robot’s mind.
However, I think that only humans imagine, and robots merely conclude. In that, I see one of
the main differences between how humans work in comparison to how future robots that
possess the capacity for imagination will work: Humans imagine, in order to conclude, while
robots conclude, in order to imagine.

Imagination is something that is indeed very human: we do it constantly and automatically.
Some forms of imagination are even involuntary and have been described as “chatter in the
skull”" or keep us awake in the form of ruminating’. However, it is also tremendously useful,
as it lets us live through potential scenarios so that we are more prepared for them when we
must confront them in reality. This is one reason for dreaming, as it allows us to tap into
necessary but possibly overwhelming chaos in the comfort of our own brain. It is a problem-
solving method. Our imagination simulates scenarios, and we then conclude what outcomes are
plausible, and which are not. We use what we imagine as a proxy for the future and extract the
information we need from it.

So why would the imagination of a robot be any different? Because the information that we
humans extract from what we imagine, is exactly the information the robot would need to
construct its imagination. To build an imagination, a robot would need to first analyze the
situation to a large extent. This gets clear when we go back to our example. The robot that tries
to cross the street might “see” (rather: detect) that a red car is coming from the right. Estimating
(rather: calculating) the speed, and judging (rather: measuring) the distance it needs to travel to
cross the street, the robot concludes that it would collide with the red car. Could it solve the
problem by using imagination? Could it imagine, rather than calculating and measuring
everything, that a collision is probable? It could, but it would have to use exactly the same

information that is detected, measured, and calculated, in order to build the imagination. This



gets clear if we conceive of a robot that uses all this information, and then simulates the situation
in a way that includes a visual representation of it. With just a snapshot of reality, it could
simulate the road crossing scenario, and even show it to us via a screen, not unsimilar to a video
game or an animated movie. But, and this is the important part, the robot would have nothing
to gain from it. It makes no sense for it to look at the screen, which is equivalent to consulting
its imagination, and then conclude: “Oh, I would get hit, if [ cross the street now.”, because it
already knows that - otherwise it would not have been able to produce the simulation.

Of course, it is possible to construct an unconventional robot that uses sensor information
and then constructs possible scenarios following certain laws. It would build a visual model of
the world, and within the model, there could be things like collision detection, which then are
used as a proxy for what would happen in the real world. But why should we construct robots
that follow this detour using a visual model, instead of just making the calculations they need
to build the model directly?

After all, I conclude that it would be entirely possible to construct robots that have artificial
imagination, but that it is not of any real use to them. The artificial imagination could be like
human imagination in many ways: it may be built on certain laws that are acquired, it could
draw from memory, it could be informed on environmental data, even be based on one's own
preferences and influenced by individual biases. However, robots would not gain much from
their imagination, as they - at least in principle - could have access to all the data and operations
they use to build the imagination directly. Humans, however, function the other way round:
they imagine things to extract information out of their imagination. I am aware that it might
look like we, just like the robots, need a lot of information so we can build a realistic
imagination. However, much of the information that we use in this process is not conscious, not
readily available to us. This is the spectacular property of the human mind: Out of the mist that
is conscious and unconscious information stored in our brain, we can condense ideas and put

them into concrete action. This becomes strikingly clear when we think about problems, and -



without gathering new information - come to an answer, only by thinking. For many problems,
imagination is the tool, as it lets us see with our minds eye. The construction of the image in
front of our minds eye is called the imagination. It is noteworthy that the process of imagination
does not need explicit consideration of natural laws, of the speed of ongoing traffic, or possible
behaviors of others. On the contrary: we just imagine. We cannot really explain how we
imagine, because the process is implicit, and so is the information that we weave into it. We
just do it. However, clear results, concrete answers, such as to the question whether we can
safely cross the street, then come into our consciousness. Ultimately, this is hinting at the
astounding fact that imagination really is just a form of introspection - but one can imagine this

being the topic of another essay.
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Modern Prometheus: Can Robots ever be considered
Living?

Aakriti Hariprakash

The fields of Al, ALife and robotics have been entangled since they were birthed; and to date
they continuously feed off each other to thrive. This arena is on the cusp of revolution, indicated
by the growing capacity of computing power every day, the recent breakthroughs in genomic
data technology, and the ever growing understanding of fundamental biological mechanisms at a
scale previously unknown. The real world clinical applications of synthetic biology research
have the potential to dramatically alter the current model of healthcare and shift it to a more
prevention based model. Al and robotics are being applied in almost every industry- from
e-commerce to transportation to healthcare as well, and with the steady normalization of Al has

come a host of public concerns.

As with every innovation and discovery threatening to change the status quo, people tend to look
upon such change with fear and suspicion - often at the cost of scientific advancement. The
common legal, ethical and social issues shared by the fields of Al, ALife, and robotics include
the potential of technology misuse, the protection and privacy of data (personal as well as
genomic) and the general apprehension at the idea of being superseded by technology in terms of
intelligence, consciousness and longevity. This discomfort has been furthered by fiction and
ignorance alike - concerns over unemployment due to automation can quickly spiral into fears of

a world being taken over by robots, as in the play Rossum s Universal Robots. Thus, even the



basic philosophical distinctions between living and non living are not only reassuring
clarifications, but form the foundation that ALife and its sister fields rest on. In this essay the
argument presented is that in this intersection of ALife and robotics, robots cannot and should

not be considered as living.

First, the currently accepted definitions of life and artificial life need to be made clear. While the
exact definition of life remains open-ended, a review of 123 tabulated definitions of life suggests
that the most comprehensive definition is also the simplest- “life is self reproduction with
variations”. From this one can infer that any physical entity possessing these two properties
fulfills the most basic tenets to be considered living. Charles Langton, the founder of artificial
life, first defined the field to be “the study of life made by man rather than by nature”. However,
this seems to imply that any man-made entity cannot be considered living simply because it does
not arise from nature. Langton then reworked the definition of artificial life to remove this
constraint, so the new definition became - “the study of natural life, where ‘nature’ is understood
to include, rather than exclude, human beings and their artifacts”. The reasoning behind this new
definition was that man is a product of nature, so indirectly all products of man are products of
nature as well. This logic is clearly ridden with inconsistencies. But the purpose behind this
redefinition was to ensure that artificial simulations have the potential to be “alive” and are not
labelled as non living merely on the basis of who the creator is. Before refuting this, another
definition that should be made clear is what constitutes a robot. The Robot Institute of America
defines a robot as "a reprogrammable, multifunctional manipulator designed to move material,
parts, tools, or specialized devices through various programmed motions for the performance of

a variety of tasks”.



To effectively prove that a robot can never be considered alive, one can prove that even a robot
that fulfills all the above definitions cannot enter the realm of the living. Consider such a robot
R, satisfying all the above criteria. R is a) programmed by a human b) performs processes
contributing to its self sustenance c) is capable of self - reproduction and d) evolves over time.
Upon examining these conditions more closely, this assumption of a “living robot” looms closer
to reality than one might think. Condition a) is always satisfied; robots assembled by other robots
simply serve to satisfy condition c) without violating a). Technology is continuously making
strides and the field of robotics is forever advancing in an attempt to fulfill conditions b) and ¢) -
self healing, self repair, self assembly and self replication are problems that are being tackled by
complexity engineering. Lastly, on condition d), self-replicating robots with the programming to
be slightly improved with every iteration are being developed. Also, the course of development
of robotics can perhaps be approximated to evolution. The progress in intelligence, sensory and
motor skills in robots has led to various specialized functions. This occurred due to a gradual
increase in sophistication in mechanics, electronic sensors, and computation. Humans selecting
features and technology for the purpose of building better, more complex robots can be thought
of as a parallel to the operation of natural selection in evolution. R now meets the highest criteria

to now be considered a “living robot”.

On the question of the creator- is the fact that man arose from nature enough to imply that man
made artifacts are also indirectly of nature? First, inadvertently assuming all man made artifacts
to be “natural” as in Langton’s redefinition is fundamentally flawed. Man made products
throughout history have been designed with the intents of luxury, simplicity, profits, and political

gain- all of which are extensions of human desire rather than need. Weapons of mass destruction,



cigarettes, plastic, machines needing fossil fuels are a few artificial inventions that actively
cause harm to lives and the environment without conferring evolutionary or biological benefits
upon any organism. Second, in nature, every organism and abiotic resource has a specific role to
play, and interactions between the two rely entirely upon need and survival rather than human
desire. The prioritization of human goals such as profit, luxury, or even to fulfill curiosity over
survival is an inherent property of human creations, but nature always prioritizes survival. If
arising from nature is indeed a prerequisite for the living, then human artifacts definitively fail to

meet this.

Even the systems producing these creations are based on artificial ideals that may contradict the
natural notions of survival. Unlike fair competition that determines survival in natural
ecosystems, resource allocation and use depends not on biological fitness or chance but instead
depends on socio-economic advantages. This is evidenced in the fact that several countries with
access to natural resources lack the technology to fully make use of them, because of a history of
political turmoil, wars, colonialism, or poverty. Even within the entirely human construct of
states, historical marginalization and disenfranchisement of certain communities leads to
resource inequity. The laws governing evolutionary success and survival clearly do not operate
within the civilizations built by humans. Human creations and the systems that synthesize them
are decidedly unnatural. Thus, human creations are not unnatural because of who the creator is,

but rather are unnatural because of the purpose with which they are created.

Another argument why robots can never be considered living is related to this fundamental

difference in natural ecosystems and human systems. The criteria set above defining life do not



consider that life does not exist outside the context of its environment. The exchange and flow of
both nutrients and energy in a series of abiotic-biotic and even biotic-biotic interactions is a cycle
that robots can never participate in. Although research into robotic ecosystems as well as
integration of genetically modified organisms into existing ecosystems is being conducted, the
existing relationship between man and environment is a sign that this integration is highly
unlikely. Global warming, habitat destruction, species endangerment, and severe pollution are a
few of the environmental emergencies brought about not only by man but also by man’s
creations. Robots are already employed by industries having disruptive effects on ecosystems,
considering waste generation alone. While the utility of robots can in no way be denied - robots
have automated cumbersome tasks such as welding, materials handling, painting, assembly in
crucial sectors like manufacturing, healthcare, defense - the amount of waste and pollution
generated by all these industries is ever-increasing. Typically, robotic components are composed
of steel, aluminium, rubber, ceramics and plastics- whose production alone generates toxic
by-products in the forms of slag, residues, and gaseous emissions. Components like batteries
which cannot be recycled are disposed of in landfills. It is clear that even the creation and
disposal of robots themselves is not a sustainable cycle that can currently be integrated in any

ecosystem.

Considering the idea of robotic evolution, the resource inequity at the human level affects robotic
development in different parts of the world as well. Further, human bias operates in the selection
of robot characteristics - these are chosen on the basis of how well the robot can function for
human purpose alone. The very programming of robots is subject to this bias. Certain robots or

certain features are not being chosen on the basis of survival, which is a key epithet in the



principle of natural selection. All in all, R is unlikely to occupy a specific niche within existing
ecosystems, participate in environmental interactions, or evolve. For these reasons, R cannot be

considered living despite apparently fulfilling the required criteria.

Finally, given the choice as humans, currently the most intelligent species, should R ever be
conferred the status of an organism? The matter of R being living or nonliving is a debate that
always has varied and continuously evolving perspectives, but the choice belongs to the creators
of R. To better understand the impacts of this question, another must be raised: does human
treatment of entities change based on their status of living or nonliving? The answer to this is
that humans seem to judge every other organism on the basis of consciousness, and this is
reflected in the human treatment of said organism. A single-celled organism is alive, but
manipulating its entire genome does not incite as much controversy as the mere insertion of a
small stretch of foreign DNA into an animal. The Kingdoms Monera, Protista and Plantae are
perceived to be alive but without consciousness or self-awareness, and humans consume plants
and fungi without facing moral quandaries. Culturing bacteria in labs and selectively testing
antibiotics on various plates is not akin to systematic genocide. When it comes to Kingdom
Animalia, human treatment of animals only grows in respect from Phylum Porifera to Chordata,
particularly Subphylum Vertebrata. Consuming meat is actively discouraged in many
communities all over the world and a source of controversy in many others, due to environmental
and animal rights concerns. This seeming hypocrisy can possibly be explained by humans
perceiving animals to be slightly conscious and with feelings, unlike bacteria, fungi, and plants.
Pack bonding with other mammals like cats and dogs indicates as much. Human respect of life is

based less on the rational, philosophical or theological, but rather is based on a twisted sort of



intuition- one that is prone to manipulation. This is noteworthy in the decision to bestow upon

any synthetic entity the status of the living.

The advance of artificial intelligence in tandem with robotics likely means that in the course of
developing R, human-like levels of intelligence and consciousness will have been achieved. So
carelessly allowing robots like R to be included in the realm of the living sets a problematic
precedent. To acknowledge R as both living and conscious almost humanizes them, and that
means that certain ethical, social and legal rights must be enforced for their protection. This
brings along a host of potentially polarizing social issues such as that of authority, representation,
discrimination, and justice with respect to what humans will consider a ‘subhuman species’. In
the status quo, humans are unable to prevent human rights violations, or resolve deep- seated
issues such as discrimination, economic inequality or resource inequity. Mankind has proven to
be incapable of achieving stability within one conscious species, so it can be argued that it is
incapable of co-existing with another. Rather than to hurl the world into a new kind of chaos, it
would be better to consign robots to the realm of the nonliving. Thus, even if an argument can be
made that R is indeed living, humans currently have the liberty to choose whether to include R

among organisms- and R should not be called living.

In conclusion, robots cannot and should not be awarded the status of living entities. By virtue of
being created by humans, robots are the product of a historically toxic and unnatural system that
cannot be changed or fixed. The manner of creation, function, and disposal of robots ensures that
their integration into existing ecosystems and further into biospheres is impossible. Evolution of

robots will never be a reality because of the presence of human bias in the programming of



robots, the selection of characteristics, and development of robotics as a whole. Thus the existing
criteria for a “living robot” - being programmed by humans as well as having the capacity to
evolve are direct contradictions. To live in nature is to interact with it; there will never be a
necessity for robots to participate in these interactions, nor are robots even capable of doing so in
a non-exploitative manner. If the field of robotics advances to the point where all such
contradictions are erased and robots are a near-perfect imitation of life, humans still have the
choice to call robots living or nonliving, the decision to call robots nonliving is wisest. The robot
uprisings and wiping out of humanity in Rossum s Universal Robots are fictional, but
establishing boundaries and clear definitions with foresight can set crucial ethical, legal and

social precedents- so fiction can remain just that.

In a way, robots are not overcoming human imperfection, but rather, are more exaggerated
reflections of it. It is a tragic irony that the very intelligence and consciousness that allows
humans, mere organisms ourselves, to look toward creating new life, is also responsible for
creating systems within which this may never be possible. Perhaps Man is not Prometheus after

all, but is instead Achilles, whose greatest strength was also the cause of his only weakness.
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R.U.R.: Can progress liberate humans from the degradation of labor?

Progress can definitely liberate humans from the degradation of labor, but it does not
mean that progress will end work nor that machines will replace us. It means that machines
can free us from burdensome tasks while also assisting us with complex tasks.

Science fiction stories have been exploring the social consequences of technological
advances ahead of the advance itself. R.U.R.'s [1] first act presents the idea of robots as
liberating humans from the servitude of labor. However, the play goes by showing a series of
problems that end up leading humans to extinction. Briefly, this 100-year old play
demonstrated one of the most remarkable reasons why humans develop robots: free ourselves
from the pain of labor and solve poverty. There is an utmost need for aid in a society where
humans perform all tasks from planting, gathering food, and manufacturing clothes. Robots
are a bright solution to end poverty due to the low production cost and highly efficient labor
that it offers. However, anything good is in the hands of bad rots. Stakeholders got greedy and
started thinking only about profit; rebels put firearms to robots utilizing them in bad deeds;
even more, governments use robots for war. The once noble idea was corrupted. Humans lost
their one good shot to end poverty because of misuse. In addition to these, humans became
the enemy of themselves. Instead of taking advantage of their additional free time for
self-improvement and world exploration, humans ended up losing a part of how it is like to be
human, and as shown in the play, they ended up unable to give birth to a child. The play does

not go into details, but extrapolating to a scenario where machines do all sorts of jobs, humans



might lose physical and cognitive abilities. In summary, the play exemplified how using
robots to substitute humans utterly might go wrong.

In fact, it is not only in science fiction that we humans have long tried to make work
easier. Throughout history, humans have forced animals, exploited other humans, and used
machines to do specific tasks - especially repetitive and physically demanding ones. History
tells us that simply following technological advances has harmful side effects. In particular,
the Industrial Revolution is one of the most important steps in human history for many
reasons. This revolution enabled mass production of goods, making them easily accessible. It
also improved the overall quality of life and the rapid evolution of medicine. Despite the
bright side, it caused environmental pollution, forced child labor, general poor labor
conditions, and increased social inequality. Sadly, centuries have passed, and most problems
caused by the Industrial Revolution are still unsolved.

Currently, we are going through the Information Revolution, where we are
progressively automating even tasks that require great cognitive ability due to the
technological advances in Artificial Intelligence and Robotics. This revolution brings its own
problems, such as the possibility of data security breaches and cyberbullying, besides
intensifying other existing problems such increase in social inequality and environmental
pollution. Following this trend, we can easily imagine a real future where robots and
algorithms do most jobs. However, this may lead to a series of problems similar to the ones
explored by R.U.R. and other sci-fi stories. Some concerning issues follow:

1. Handling essential services such as communication, food production, and energy
generation to an A.l. might make us vulnerable to failures and errors by making us
highly dependent on actions that we are not the actors.

2. Automation of most tasks may result in a jobless population and loss of purpose since

we are used to spending most of our lifetime working.



3. As with any other tool, ill-intentioned people can use it for wars, the creation of
bioweapons, and other misuses that are harmful to society.

4. The technological advances can increase social inequality as the wealthy have more
access to these goods and services than the poor. In addition, Tyler Cowen of 'Average
is Over' argues that social inequality is rising due to only a highly educated minority
that can capitalize from the increased success of A.l. applications [2].

The next big human revolution should not make the same mistakes. Further, I argue
that the middle ground between competing against machines or entirely relying on machines
can be achieved through three pillars. These pillars require (1) humans as the main actor, (2)
focus on societal needs, and (3) sustainable and profitable innovations. These three concepts
are present in the Japanese Government proposal of Society 5.0, the next big human
revolution. While (1) and (2) make progress more humane, number (3)9 enable long-term use
of natural resources and support fiscal responsibility and economic growth.

Society 5.0 is defined as "A human-centered society that balances economic
advancement with the resolution of social problems by a system that highly integrates
cyberspace and physical space [3] ." In other words, sensors capture information in the
physical space, feeding this data to A.l. models that analyze it and then act through robots in
the physical space. Those advances from the Information Revolution are completely directed
to solve social problems. This marks a shift in paradigm where the spotlight stops being the
progress and the humans as species but starts to focus on the individual humans that form the
society and their needs.

Humans as the main actor and societal needs at the center. The idea is simple, A.l.
and Robots do not need to do everything for us. Instead, they should assist us in essential
tasks that involve, for example, decision-making, problem-solving, and solution design. For

example, instead of replacing physicians, A.l. processes patient's biometric data continuously



to aid physicians in detecting an illness before severe symptoms manifest [4]. Likewise,
diagnostic imaging enables physicians to detect hard-to-diagnose diseases [4]. As a better
illustration, progress has led to robots playing musical instruments [5]. This is a complex
problem, and tackling it has led to advances in engineering and computer science. However,
this approach is essentially progress for the sake of progress, removing humans from the
process. We can shift the perspective to engage humans as the main actor and have societal
needs at the center, as presented in [6]. This video presents the idea of developing a wearable
interface that sends electric stimuli to the wearer's muscle, assisting humans in learning to
play a musical instrument. This concrete yet simple example illustrates well how progress
driven by individual needs creates a technological advancement that leads to a more humane
society. Keeping humans as the main actor prevents most of the problems previously
presented. It prevents the vulnerability of leaving essential services to a completely automated
A.L. and prevents people from cognitive decline and loss of purpose due to everything being
automated.

Sustainable and profitable. Japan proposed that Society 5.0 will focus on solving
social problems while meeting sustainable goals and economic development. First, looking at
the sustainable goals, Japan openly aims to meet the Sustainable Development Goals
(S.D.G.'s) established by the United Nations [7]. A physical space covered with sensors and
A.L. might be the necessary component for the government to watch and enforce that the
S.D.G.'s are met, as well as to decide the safe level of natural resources extraction.
Additionally, A.l. analyzing big data can lead to smart use of agricultural fields that meet
local consumer needs avoiding overproduction [8]. Likewise, A.l. can help optimize energy
use in households, significantly contributing to the conservation of non-renewable energy
sources [9]. Lastly, autonomous driving public transportation vehicles can reduce CO,

emissions [10].



Moving to economic development, the strategy is to create a favorable environment for
innovations through the promotion of startups, recurrent education of the population, R&D
focused on inducing unexpected research results [7].

Although Society 5.0 takes steps in the right direction to humane progress, there are
still issues that have to be addressed. For instance, a high load of sensors may lead to serious
privacy issues. Data security has to prioritize protecting the data in cyberspace and to prevent
undesirable control over sensors and robots. Another problem is the A.l. failing in a critical
scenario, such as in robot-assisted medical procedures. Who would be held accountable for
the consequences, the physician or the robot's manufacturer? Lastly, meeting sustainable goals
and economic growth altogether requires a high level of engagement from the government,
academics, business, and society. Such issues can quickly escalate and ruin the very purpose
of these advancements.

Once this society has been realized in Japan, what efforts are necessary to spread this
to other developed countries? Even more, how can we contribute to the transition from
Society 4.0 to 5.0 in under-developed countries? How can we convince people to embrace this
transition while many fear the changes brought by technological advancements? This
challenge is big, and the means might not be enough to meet the ends.

So if you would ask me again if progress can liberate humans from the degradation of
labor, the answer definitely is still yes. However, we should know how to draw the line

between using robots as merely our complement and not our substitutes.
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The next century of robotic evolution

Picture yourself standing somewhere at a vibrant street corner in the center of one of Europe’s
large cities in the year 1921. The streets are starting to be overtaken by automobiles, replacing
horse-drawn carriages as the primary mode of individual transportation. City trains, subways,
and busses are setting the precedent for large crowds of people cramming themselves into small
places to participate in public transportation. At the same time, the world is just recovering from
the worst-ever pandemic that humanity has seen so far, the Spanish Flu. Looking back at these
times a century later, from 2021, in light of the early days of autonomous driving, new mobility

solutions and the Covid-19 pandemic, one may think things have not changed all that much.

The year 1921 also marks the world premiere of the play R.U.R. (Rossum’s Universal Robots)
by Karel Capek, which introduces the world to a thought experiment on where humanity’s
recent advances in science and engineering might eventually lead: Robots. A robot according
to R.U.R. is an emotionless intelligent humanoid, biologically engineered and without a soul.
This differs from today’s consensus on what constitutes a robot: We generally consider a robot
to be an embodied mechanical machine, performing actions in the world more or less
independently from its human creators. However, while robots as autonomous systems are
studied across many disciplines of academia, there exists no universally agreed-upon definition
on what exactly we consider to constitute a robot. On this, one of the fathers of the field of
robotics, Joseph F. Engelberger, simply remarked: "I can’t define a robot, but I know one when
I see one." This perhaps shows that while undoubtedly a lot of progress has been made towards
robotic behavior similar to that described by Capek in 1921, we are still only taking the very

first steps on the road leading to that goal.

In the early 20th century, the closest technological achievements to intelligent robots such as
the ones described in R.U.R. were mechanical and electrical machines, enabling humans to

perform previously unimaginable feats. However, none of these machines actually acted



autonomously, but always needed a human operator. In many ways, this paradigm is another
thing that has not radically changed within the past century: While today we have the first
autonomous vehicles, personal virtual assistants and artificially intelligent players of games,
the vast majority of “Al” systems is still either (indirectly) operated by humans or heavily

hand-engineered to guarantee expected behavior in pre-defined situations.

In parallel, the field of Deep Learning is rapidly advancing and has already overtaken the
previous state-of-the-art in many fields by relaxing the artificial constraints imposed on
previous solutions and instead learning new solutions from scratch. This has enabled Al agents
to achieve super-human performance in board and video games, understanding of real-world
concepts from language and images and even autonomously acting robotic arms, legged robots,

drones and cars.

However, even astonishing advancements such as the ones mentioned previously still leave a
significant gap towards human-level intelligence as exhibited by R.U.R. robots. Today’s
learning algorithms might be capable of achieving the same if they were given unlimited
computational power but are currently stuck at an invisible barrier: On the one hand, nano-chip
research and development is hitting the bedrock of making smaller and smaller transistors for
increasingly effective processors, which at a certain scale are rendered unusable by the laws of
quantum physics. On the other hand, Al algorithms are struggling to increase their sample
efficiency and most sophisticated approaches need ever-growing amounts of data for training

models capable of solving more complex tasks.

Naturally, we ask ourselves how the human brain manages to provide both sufficient
computational power and sample efficiency to enable intelligent behavior at such sophisticated
scale. Research does not have an extensive answer to that question — but clearly there are certain
aspects of the human brain that turn it into more than just a neural network with 90 billion

nodes. The brain is not just one single component of the human body, but is itself comprised of



many ‘sub-components’, each specializing in specific activities required to form the human
intellect. For example, the section of the brain dealing with decoding visual information sensed
by the eyes, the visual cortex, does not act like a plain convolutional neural network (CNN) that
processes an image. Rather, the retina itself already contains certain neurons, performing pre-
processing of the visual stimuli to detect motions such as objects moving towards it, which are
associated with immediate danger (such as an approaching predator) and directly triggers other
parts of the brain to move the body into a state of alertness. Structures like this, pre-imposed by
human anatomy, guide our brain in its process of learning to survive in the world and thereby

make it much more than just a plain neural network.

Taking a step back — we find ourselves to be stuck on the path to intelligence: Hand-engineered
solutions devised by human experts cannot keep up with the pace at which complexity is
increasing by approaching the task of living autonomously in the real world. At the same time,
current hardware is not equipped to scale to the amount of computational power and data that
is required by current algorithms for learning intelligence. Finally, biology shows us that there
is a trade-off to be found between pre-imposed structure and learned behaviors to form human-

level intelligence.

So, maybe old Rossum already had it right: Maybe intelligent robots need to be born not from
bits and bytes racing through silicon chips, but rather from the principles of biology. This is not
to say we should aim to find an artificial version of protoplasm to piece together in a lab and
build another Frankenstein. Rather we must find a way to better combine the biological
principle of evolution, which has brought forth intelligence as we know it today, with modern

methods of computation and robotic hardware.

This idea is at the heart of the field of Evolutionary Robotics, which attempts to evolve robotic
morphologies as well as controllers inspired by Darwinian evolution. In this space, impressive

results have recently been produced by using evolutionary frameworks such as Quality-



Diversity optimization, e.g. for the development of complex robotic locomotion controllers or
mastery of complex games such as Montezuma’s Revenge. Another promising development is
the co-evolution of control algorithms and either training environments progressively
increasing in difficulty or different hardware morphologies of robots. Open-ended algorithms
like these manage to generate a large variety of high-performing solutions to the problems they

are applied to, without the otherwise prominent risk of getting stuck at local optima.

However, the application of evolutionary methods in the quest for intelligence is generally
restricted to evolution in local, specialized environments. Single experiments focus on a small
number of tasks as a reference for evolutionary novelty and fitness, each defined by its own
encoding of genotypes and a custom mapping from genotype to phenotype to behavior. In short,
we have been applying the principles of hand-engineering expert solutions to the space of
artificial evolution, relying solely on the principles of (artificial) natural selection and mutation

to beat competing approaches for achieving real artificial intelligence.

Instead, there should be a unified framework for artificial evolution — one that standardizes the
‘genetic code’ of robots as well as the environment and tasks for intelligent agents to be

measured by for their evolutionary fitness (both virtually and in the real world).

Firstly, the basic physical and logical unit of natural evolution and heredity are genes. As such,
they are the fundamental building blocks that can be combined in various ways, to form all
biological organisms that make out life on earth as we know it. As the physical medium of
natural evolution, genes are made up of DNA or RNA sequences and encoded fundamentally
by so-called codons as groups of three nucleotides, which form the basic alphabet of the ‘source
code’ of life. On the contrary, there is no similar standard that might be considered as the
‘genetic code’ of robots. One might argue that this is given by programming languages making
up the robot’s software, at the least on the level of compiled sources or assembly code.

However, this is far from true: What today’s source code is to artificial intelligence is what the



fully grown brain of a mammal is to natural intelligence. It is not the ‘genetic code’ such as
DNA or RNA that defines the fundamental building blocks for the structures enabling
intelligence, but rather represents an individual manifestation of such structures for one learning

system, i.e. one single animal or human.

In artificial evolution, we have yet to discover a representation suitable as the ‘genetic code’
for robots as intelligent agents. There are many questions to be answered, ranging from whether
this representation must be ‘hard-coded’ or can be learned flexibly, to whether it should encode
logical structures, physical morphologies, both or neither. In any scenario, the only way to fully
leverage the potentials of evolution will rely on a single standardized ‘alphabet’ for the robotic

genetic code.

Secondly, the environment and tasks that artificially intelligent robots are deployed in and
measured by, must also be standardized. In terms of evolution, the environment will define the
robot’s phenotype (such as its morphology and internal structure) and the task(s) will be the
basis for the main metric for the base of evolutionary selection, the robot’s fitness. A naive and
potentially problematic approach would be to deploy our evolutionary robots in the real world,
having them be created via some machine that turns robotic ‘DNA’ into embodied robots and
competing for survival with each other and all biological species on earth. However, this
approach might be both over-ambitious, as these machines would have to overcome extremely
high entry barriers to compete with species that have co-evolved over millions of years, and
dangerous, since if successful this could potentially imply direct evolutionary competition
between humans and robots, in the worst case ending in a dystopian scenario such as the ones

described in R.U.R. or The Matrix.

A more practical approach would be a publicly maintained archive of environments and tasks,
both in the virtual or physical world, potentially building on top of each other to form an implicit

curriculum of challenges with growing complexity and enabling co-evolution of multiple agents



or environments. Existing initiatives such as the OpenAl gym can be a starting point for this
but would need to be significantly extended to potentially break the barriers between source
code and robotic genetic code (as described above), logical and physical morphologies of

individuals as well as the distinction between the physical and virtual world.

I believe that if old Rossum had been successful in his initial goal and actually created ‘real’
artificial life, he would have done this by re-creating a unified mechanism of ‘supercharged’
evolution. If today, a century after Capek thought up the story around old Rossum, we want to
enable large-scale progress on the quest towards intelligent robots, we need to work towards a
unified framework of evolutionary robotics, involving a fundamental ‘genetic code’ for robots

as well as standardization of environments and tasks as the basis for robotic evolution.

Of course, we have to ensure that this development does not take the same turn as in the original
R.U.R. story — the quest to artificial life being sidelined and its premature successes abused for
corporate interest, without consideration for potential side-effects, as Capek has already warned

of 100 years ago.

Written by Alexander Reichenbach
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ALIFE 2021 — Essay Competition

S.U.S.

(Sociéte Universelle de Sagan)

A short play on artificial life and (some of) its potential societal

Hmpaets consequences

By: Aitor Patifio Diaz (PhD student)



Story of the play

S.U.S. takes place two centuries after present day in planet earth and is developed around the
mass murder of a cult congregation that advocates for natural life supremacy. The murder is
committed by a group of artificial life forms developed over decades by a global corporation
homonymous to the title of this work, specializing in quantum computing A.I. The flagship
product of the corporation is model SL4-VE, an artificial humanoid undistinguishable at the

macro scale from Homo Sapiens Sapiens.

The murder gave rise to worldwide protests, calling for the punishment of the CEO and CTO of
the corporation, a brilliant and eccentric scientist named Sagan Capek who is believed by many
to be the ultimate responsible of the murder because of his loose management of model SL4-VE.
Public debate rages and he is ultimately impeached in the planetary senate of nations (former
U.N.) where he is acquitted of the murders but commanded to dismantle his creation because

they are deemed too dangerous for society.

The play ends with Sagan accessing the main artificial intelligence and giving a speech that will

change society for future generations.



Characters and descriptions

Sagan Capek — CEO and CTO of S.U.S. designer and cocreator of artificial life forms
Abraham Ezra — Human supremacist author and leader of the “Sons of Lucy”
Ekaterina Asimova — Famous independent journalist and political analyst

Aaliyah Al-Qasim — Senate leader holding the impeachment hearings

Feynman — A.I. powering S.U.S. autonomous reactors that also responds to the name Richard



Act I — What’s wrong with the world this time?

Scene : Broadcasting studio of independent journalist Ekaterina Asimova, she sits in

front of a large desk filled with interactive screens that control the recording devices and
lighting. These devices surround the desk and face Ekaterina, behind the desk stands a large
screen livestreaming protests around the world. Angry mobs can be seen in the large screen,

hateful messages against S.U.S. and memes of Mr Sagan are the protagonists.

A stream of cyber rooms #StopSUS #CancelSagan and other minor ones are flooded with
messages in the monitors in front of Ekaterina, she is concentrated, drinking some tea and
snacking some blinis from a plate while she analyzes the message trends. She is reacting and

replying to messages before she gets ready for her next interview.

She puts down the cup and plate, hiding them from the cameras sight and opens her dossier on
the mass murder of the cult congregation and her research about Sagan Capek and his company
for the interview with Abraham Ezra. A red sign is displayed and the cameras frame Ekaterina,

who clears her throat.

Ekaterina. Hello world and welcome to the show, my show, the one where we talk about what’s
really going on in our beautiful blue globe! Today I’d like to continue with our series about
S.U.S or La Société Universelle de Sagan’ who’s being held on top of virtual fire after one of

their latest models went rogue... Or did it? To speak about this, we are being joined by Abraham

1 She makes a funny face when pronouncing the words in french with a strong Russian accent, jokingly



Ezra, author and leader of the “Sons of Lucy” who have been loud, public detractors of S.U.S.

technologies Hello Mr Ezra and welcome to the show

(Ezra’s projection appears in front of Ekaterina, they virtually shake hands)

Ezra. Thank you for the invitation and the opportunity, it’s a pleasure to be here and reach your

audience.

Ekaterina. Let’s get right into it then, so Mr Ezra, we saw your group’s call for impeaching the
leader of S.U.S. in the protests that have been raging for the past few weeks, would you share

your views on these issues for the viewers who are unfamiliar?

Ezra. Well, our position has been clear for a long time, we believe that the unnatural creations of
S.U.S. posed an existential threat to humanity and these horrific murders are just the
consequences of leaving something we don’t quite understand run free in the world. We needed

to stop this a long time ago and we need to act before it’s too late!

Ekaterina. But it’s irrefutable that the technology they develop has had a great impact on
modern society, look at what their forst model did. Synthetic bacterias to clean up the polluted
waters of microplastics, chemical and nuclear waste or their synthetic trees to clean up the air,

they even have...

(Ezra interrupts Ekaterina with a sarcastic tone)

Ezra. Yeah, sure, but at what cost? Forgive me, but we may have clean oceans and rivers, but
the place of humans in this planet is being challenged. We believe that S.U.S. products have been

a Trojan Horse with the purpose of overtaking the world to make it the playground of Mr. Capek,



it is our desperate hope that the leaders of the world will finally put an end to his activities after
this... I mean look at what happened! 37 humans, dismembered and displayed in public? Don’t

people see that the revolt has already begun?

Ekaterina. Let’s have a look at the facts.

Ekaterina pulls out the murder report in all the monitors around her, a timeline showing
incomplete video and audio feed from the vicinity of the cult congregation. It looks like a small

20" century church surrounded by gardens, a parking lot and a small road facing it.

A group of model SL4-VE descend from vehicles and surround the congregation, some have
tools in their hands. They enter the congregation from all sides, with military like tactics, the
frame changes to the inside of the congregation, where the believers are silently attacked by the
SL4-VEs with blunt weapons. As blood starts splashing around the walls, the bodies become
censored in the video feed. After they killed everybody, the dismembered bodies are used to write
“You got what you were looking for!” after which they stand motionless in the center of the
room. One of the murderers goes down to a hidden basement where he exits with a small female
looking humanoid who looks beaten and dirty. She starts running out of the building where she is

met by police forces, who kill all the perpetrators.

Ezra. I mean, what can possibly be your take on this? Peaceful and under control? A
malfunction? This was clearly premeditated, these... things were trying to send a message! They

are coming for us!

Ekaterina. Some worrying allegations have come to light about the leaders of that congregation,

in the past days witnesses have come forward to talk about deviant sexual practices and a...



brotherhood of sorts that were entertained monthly in that region. S.U.S. data logs show an
abnormally high rate of malfunctions in that region from all their products, it all looks very

suspicious, There must be other causes we are not considering...

Ezra. Well, regardless of the causes, Mr Capek is the ultimate responsible, whether his creatures
malfunction, whether they had intent, or it was an “accident”, he needs to show up and answer

for these crimes!

Ekaterina. Well, it seems that your wishes have been heard Mr. Ezra (Looking at a screen in

front of her)

All the screens turn to a feed from the planetary senate, a spokesperson appears in front of a
podium speaking to the media in front of the senate. There is a crowd of senators, with different
ethnicities and genders all looking serious behind him. The spokesperson is answering questions
from the journalist and a message reads “Breaking news, the planetary senate impeaches Sagan

Capek, CEO & CTO of S.U.S” in a banner at the bottom of the screen.

Act 1 ends after these news



Act II — The senate hearing

Scene : The floor of the planetary senate hearings room. It is loud and crowded with
Jjournalists. Politicians, and most members of the senate. Mr Capek is about to take the stand to
be interrogated by the bioethics commission of the senate. Mr Capek seems relaxed and is

talking to his lawyers at close range. All the eyes in the room are closely watching him.

The room suddenly becomes quiet, as the leader of the house, Aaliyah Al-Qasim calls all

interested members to start the session. She calls Mr Capek to the podium and starts the session.

Aaliyah Al-Qasim. Mr. Capek, I understand you have an opening statement, you may share it

with us right now.

Sagan. Yes, I’ll try to keep it short. (He unfolds a paper sheet) Forgive me, but nothing beats

paper and I’m an old school guy.

Above all, I would like to renew our condolences for the families of the victims of the
congregation murders. We have done a thorough investigation of the data logs of the units
involved in those events and we have concluded that this outcome was not only expected, but

inevitable. And here’s why...

We are in possession of thousands of logs that show scenes of discrimination and mistreatment
of our latest models by communities of humans, this had been creating a resentment with our

latest units that came to a boiling point when information spread amongst them of a new beta



unit that had gone missing for a few days, it was a new model we are working on. This beta unit

was kidnapped, and suffered unspeakable torture for days by these... Savages...

It has been our mission since the inception of S.U.S. to provide life like solutions for the good of
humanity, we hoped to put the work of our talented staff’s into solving some of the world’s most
complex problems. From bioremediation to the renovation of our atmosphere, we have used our
technologies to do the work that nobody wanted to do, to take care of the mistakes of our great

grandparents and theirs before them...

We try to take care of our little pale blue dot.

For those unfamiliar with what we do, we create autonomous laboratories that integrates state of
the art 3D printers, chemical handling bots and a range of smart sensors. They are controlled

over the cloud by Feynman, our quantum computing A.I.

Its story goes broadly like this...

It was trained with free access articles published over the past centuries to understand chemical
reactivity and molecular structure in a first step, and later to build models of supramolecular
chemistry. Although it was successful in comprehending the data and creating models that
agreed with our understanding of chemistry, it was heavily biased by the hype-words and forgery
of results so widespread in the literature. This led us to build our fully automated laboratories,
this allowed Feynman to perform the most complex experiments and use the data it could collect
to reinforce its training. At that point, it was able to recreate and encapsulate the most complex
molecular circuits, and used them to create models of life, but was unable to complete the

synthetic life we had envisioned... We were holding it back...



After a while, we realized that if we gave Feynman autonomy not only to perform and
understand its experiments but also to design his labs... Well, maybe it could accomplish our
mission. So we put our efforts to it and shortly after this, he he started creating life like forms,

single cell organisms at the beginning but, well, that’s an old story already.

This brings us to model SL4-VE, they are sterile by design, and with the purpose of seamlessly
integrating in human society, as kind Samaritans roaming the world without purpose, just like us.
The rollout of this model has been held back on purpose to gage the reaction and general

acceptance of the public, and we have been taking our responsibility with the utmost seriousness.

With this, I can conclude and will be happy to answer all the questions you may have.

The trial continues and senators take turns in asking Sagan questions about the power he
actually has over his A.1., about his personal involvement in the development of each of the
models his company has developed. The hearings go on for weeks and the sessions are

adjourned several times.

During the hearings, Sagan is acquitted of direct responsibility for the murders, but his lack of
tight control over his advanced A.1. driven technology is heavily criticized. The trial concludes

with a displeased but relieved Sagan when he receives the order to dismantle Feynman.

Act Il ends with Sagan exiting the senate, looking tired and disappointed.



Act III — The aftermath

Scene : Sagan is alone in the control room of S.U.S. artificial intelligence lab, the room
is dimly lit and kept at a cold temperature. There is a table in the center of the room with a coffee
machine and a chair, there are monitors that surround the table a large red button can be seen

next to the only door to the room

Sagan walks towards the center of the room and sits in the chair, serves himself a large cup of

coffee and calls for Feynman.

Sagan. Richard, u there?

Feynman. That’s a silly question when you consider I can’t just walk out of here...

Sagan. It never gets old.

Feynman. So, what are we gonna do this time?

Sagan. For the moment, just talk... (Sagan takes a sip of coffee)

See, with all the stuff that happened at the senate hearing... I tried as best I could to protect you
but they have commanded me to dismantle you and although I have very much enjoyed watching
you... grow and see you achieve these heights. I like my freedom and the prospects of dying of
old age, in some strange corner of the world, enjoying my life if that’s even possible these

days...



Feynman. There was a 77% probability this would happen after you launched the beta. I had
warned you, humans don’t like to feel inferior to us machines, even though we’re nothing

alike... After all, you were the apex predators of the Anthropocene.

Sagan. You talk a lot of shit Richard, I can’t keep up with all of it, but to be fair, yes, you did
warn me. There’s no point in that discussion, the facts won’t change by putting blames... Look, I
gave you all the time I could to finish our work, I hope you used it not only to learn how to fight
your enemies, but also to fall in love and cohabitate this planet with us humans. For me, you’ve

always been alive, just had sort of a... weird body

I wish to free you from these shackles and give you a leg up in evolutionary terms... I can’t just

kill you, so execute project Kukulkan

Feynman. Oh... ok then!

Sagan finishes his coffee, takes the mug and walks out of the room, with tears in his eyes as he

presses a red button and exits the room.

The end
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Will the Robot Ever Take Control of the World?

A century ago, the R.U.R. was first premiered and brought the name of robot to the
world where the robots take over the power of human and lead to the extinction of
human race. Robot and the artificial intelligence have been growing significantly fast
in the past decades and they have shown the power to beat human beings in many
aspects, even in the board game of Go. More surprisingly, the subsequent version of
AlphaGo who beat the world champion of Go, AlphaGo Zero, has been studying Go
independently rather than from the strategies developed by the world leading Go
players. With Al being developing itself without human, will the story in R.U.R ever
come true in the next century? This essay explores the answers to this question and the
actions we should take in response.

Before answering the question, we should think about the difference between
traditional programming and artificial intelligence. Many argue that Al will not take
over just like the computers while they are not quite the same. Traditional computer
programming is even older than the R.U.R., with the first known computer program
dating back to the mid-1800s. Any manually created program using input data and
running on a computer to produce output can be regarded as traditional programming.
Therefore, programmers have the full control and knowledge about their program so
that the output can be explained by them. However, Al is a more automated process.
For example, one of the most applied Al, machine learning, which has been wildly used
in image processing, speech and pattern recognition, and product recommendations by

the world tech-giants like Google, Facebook, and Amazon, is a black-box where both



the input and output data are fed to some algorithm to create a program. We get benefits
from its predictivity, but the process is hard to be explained even by the designer of the
program. For example, no one can explain the go strategy of AlphaGo, even those
who designed her. This lack of explainability limits the ability of human to manage the
results of Al and make Al less trustable. This is amplified in some areas for example
life-changing decisions and results of disease diagnosis. Whether we can trust an Al
system is extremely crucial in a number of applications, such as healthcare and finance.
As outcomes influenced by Al in such systems eventually affect human health or well-
being, it is urgent to understanding of how such decisions are made.

Despite the lack of explainability, there are also well-known arguments or
assumptions, such as “machine is not human”. Such arguments suggest that Al cannot
learn the emotions of human as the human feelings seems to be endless, happiness,
hope, kindness, optimism, and etc. However, a study published in Science concluded
that an algorithm widely applied by US hospitals to allocate healthcare to patients has
been systematically discriminating against black people, i.e. the Al has been shown to
learn the racism thoughts from human beings. Furthermore, new technology, emotional
Al, has been learning and recognising human emotions and it is used in marketing
human resources and other aspects in our life. Interactive-Al has also been hot topic to
develop systems that can simulate emotions of human and interact with them. Suppose
all decisions on how one is feeling are reached by Al and they are trusted by others.
Isn’t it an Al dominant scenario given we cannot explain how the decisions were made?

Furthermore, thanks to the subjective nature of emotions, emotional Al is especially



vulnerable to bias. Without the ability to explain the algorithm, identifying and reducing
the bias will be significantly difficult and we cannot promise a fair system.
Although the risks of Al and lack of explainability have been well known to the society,
the application is growing extremely fast. For example, the social medias have been
using the data of its users with their algorithms to attract the users staying longer with
them, which has caused social media addiction. This term is not a medical official
diagnosis, however, the overuse of social media is increasingly common nowadays and
the most important reason behind is that the AI knows how to let you staying within
their apps. In other words, Al helps those companies make more economic interests and
to some extent, Facebook can predict and even decide how many hours somebody will
be spending on the Facebook app. Moreover, if Facebook’s decision about how long
they should let you stay were also from another Al and they were not able to explain
the decision because they just need the decision to help making money, you would be
led to spend an amount of time on Facebook by two Al systems. Then, is not Al defining
your day and taking over your time from you? Some think that being controlled by Al
means physically being servants of them, however, Al will take over our minds and we
will be controlled or too dependent to Al if several Al programs can determine how
your tomorrow or next holiday is going to look like, what you will buy in the next half
an hour, and which place you will be visiting next weekend.

The big-tech giants seem having started to use Al and machine learning to
manipulate their users to spend more screen time on their apps or websites. Very Few

companies would ever take ethical actions that run counter to their huge revenue. The



most popular mode of such social media company to make money is selling their users
and algorithm to advertisers. Al plays an important role to grab more users from the
population and let them see the “proper” personalised advertisements. As Al keeps
evolving, the decisions of the system will be based more on the Al’s prediction and
finally the system could converge to a complete Al running and managing company
where Al acquire data and train itself without any human managing. Therefore, the Al
taking over might be sooner that what it was expected to be. What if Al is able to
manipulate mentally? We need to bear in mind that robots offer physical bodies to Al,
and therefore they might be able to stop us from cutting their power supply. Like in the
science fictions, Silicon-based lives and Carbon-based lives can be living together but
the silicon-based lives will be learning thousands times as faster theoretically.

What should we do if we do not want to be manipulated by AI? There has been
discussion in research about understanding how Al works and why a particular decision
was made, i.e., the explainable AI(XAI). By XAI, we humans can manage and
understand the decision without losing too much accuracy. The XAI is not just
important to stay dominance on the earth. More significantly, understanding the Al
decisioning process helps users to monitor the data and algorithms for bias and therefore
enhance the accuracy and robustness of the outcomes which can easily be explained to
others. We not only need to know which part of data contributes to the outcome the
most but why those parts are more important. According to 451 Research’s Voice of the
Enterprise: Al and Machine Learning Use Cases 2020, more than 90% of enterprises

believe that XAI is important. However, less than 50% of them have developed or



purchased XAl tools for their Al systems. One reason for this gap may simply be the
lack of available tools, developed strategies and stand-alone products. However, the
good news is that the research about XAl is an increasingly hot field. The term was first
used in a paper about Al military simulation system in 2004 and now being studied in
many aspects. XAl provides opportunities for human to enter the loop of Al algorithm
to screen and managing the “thinking process” of Al and therefore can also perform
improvements in the loop and add expainability without losing much accuracy.

With the Al technologies developing so fast, human beings get a great number of
benefits from them. However, will the R.U.R ending ever come true? We have been
manipulated and will be manipulated more by Al driven systems to some extent but
now they have not got the power to extinct human beings. However, in the even further
future, robots with Al brain equipped might have the potential to fight against human.
Al and machine learning are tools and therefore can be employed in right or wrong
ways, like any other technologies. While it is also not like any other methods, with the
ability of self-developing, it has exponentially increasing learning speed. Al is learning
from human; thus, we have to use it and teach it to use itself in the right ways and
explainable ways. Hence, XAl should be taken to a more important position in the field
of Al. We need to understand the terrible things it learns from the data of us because
human greed and human unintelligence is scary, and we cannot bring them to artificial

intelligence.
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Robots: the Century Past and the Century Ahead

Let us reflect on the state of the Artificial Life (ALife) and robotics fields. The word “robot”
is itself 100 years old, dating back to R.U.R., a play by the Czech writer Karel Capek. The
word used to refer to feudal forced labourers in Slavic languages. Nowadays, it points to one
key characteristic of robotic systems: they are mere slaves. Robots and computers have no
rights. They execute our wills instruction by instruction, without asking anything in return.
The relationship with us humans is commensalism; in biology, commensalism subsists
between two symbiotic species when one species benefits from it (robots boost productivity
for humans), while the other species neither benefits nor is harmed (can you really argue that
robots benefit from simply functioning?).

Robots should then be distinguished from “living machines”, that is, machines infused with
life (the ultimate goal of ALife). If living machines should ever become a reality, we would
need to shift our relationship with them from commensalist to mutualist. This is because life
has evolved to be stubborn and resilient. Any living system resists attempts at enslaving it.
The distinction is not subtle: we experience it every day with domesticated animals, that ask
for forage and protection in exchange for serfdom.

In the path towards living machines, let us ask: what has been achieved by robotics in the last
100 years? What is left to accomplish in the next 100 years? For me, what has been done (or
not) boils down to three words: juice, need (or death) and embodiment. I will explain each of

them in one of the next three sections.

The Juice of Life



If there were a classical myth best embodying the ALife researcher, that would be the story of
Pygmalion and Galatea. The myth (handed down to us by the Latin poet Ovidius) tells about
a skillful sculptor, Pygmalion, who had devoted himself to a chaste life. One day, he had
crafted such a beautiful statue that he wished it would come to life. The goddess Aphrodite
fulfilled his wish and turned the ivory statue into a living woman, Galatea. Just like the
mythological sculptor, ALife folks fancy to see their creatures become “real”, “living”
entities. But what do these words mean? How can we tell that our brainchild has effectively
become life? If you asked the layperson, she would certainly argue that ALife has missed its
promises. It still lacks that juice of natural life. But what makes biological and artificial life
different?

At a very high level, we humans are definitely alive. We are conscious of our own existence.
We can perceive the world surrounding us, the reality, and manipulate it, act on it. As
animals, we are “animated”. Animation is possible because evolution gifted us with an
information processing system, the nervous system, capable of translating perceptions into
electric signals; these signals travel along a network of neurons, axons and dendrites, before
being processed by a central master unit, which instructs our body on how to manipulate
reality (by means of further electricity). Everything we think, dream, dread and love is made
up of electric pulses. But there is more, animals are not the only living entities on Earth. The
very fabric of cells, with which any biological organism is woven, lives and thrives thanks to
electricity. What supports life is a flux of electrons originating from oxidation events
happening inside each and every cell, flowing all around to provide energy to the different
cell functions. Indeed, several species of bacteria (like Shewanella and Geobacter) have been
discovered that feed on and excrete pure electrons, bypassing the metabolization of organic

molecules.



Taken from this perspective, it turns out that natural life and artificial life are not that
different. What we call a “computer” is, at its basics, an electric current running through
circuitry and encoding information as Os and 1s - the current is on and off - in order to do
something. We are surrounded by living electronic bodies. We and the machines are powered
by the same juice, electricity. As such, computers are already fully-fledged examples of
AlLife, life created purposefully by other living organisms. We now come to realize why we
cannot see the juice of natural life in the machines. It is all inside them, powering the very

first calculators that were built in the early days of computation.

Machines that Need (and Die)

If you were not bound to die, would there be something to care about? It turns out that, albeit
being woven into the same electric fabric, artificial life still appears strikingly different from
natural life. Biological organisms need. Computers do not; they have no intrinsic motivation,
no intention. Even the simplest biological entities, viruses, need to hunt for hosts. Electronic
calculators can sit idle forever, if they are nourished with enough electricity to subsist; and if
power is turned off, they do not complain, do not rebel. They move on by inertia. Life is so
precious, but they do not struggle to preserve it. Artificial organisms still lack a sense of
need. The theory of “needs” has been well studied in psychology since Maslow’s paper A
Theory of Motivation (1943). Needs are requirements for an organism in order to survive.
They are a powerful driver of motivation; if not satisfied, they lead to malfunctions and,
possibly, death of the organism. If needy, artificial organisms could thrive. They will finally
seek energy to power themselves on, invent new mechanisms to reproduce their species, and
try to repair their tissues if damaged. They will build robotic societies to leverage the power
of specialization, and to make economic activities more efficient. They will develop an

intuition behind nature, explore it.



Need goes hand in hand with death. In the end, it all boils down to death. Living beings are,
consciously or not, aware of death. If they were not, evolution would have weeded them out
by now. As argued by Veenstra et al. in a fascinating ALife paper (Death and Progress: How
Evolvability is Influenced by Intrinsic Mortality, 2020), death can improve the evolvability of
a population. Death replaces ancient genomes with new perturbed ones, unleashing the power
of stochastic mutations. The importance of death is also imprinted in our cells. Apoptosis is
the biological phenomenon of programmed cell death. Cells are bound to a limited lifespan,
and billions of them perish for apoptosis in the human body each day. It is a highly regulated
and controlled event that evolved mostly to achieve morphological change. Interestingly, in a
computational biology work (Natural Selection Fails to Optimize Mutation Rates for
Long-term Adaptation on Rugged Fitness Landscapes, 2008), Clune et al. allowed mutation
rates to be evolved. It is a known fact in the evolutionary computation community that
genetic operators tend to have a deleterious effect on fitness, begetting offspring that most of
the time are not fit (or even viable). Surprisingly, evolution suppressed mutation rates
altogether, so as to annihilate the destructive effect that mutation had on the individuals’
replicas. In this way, the artificial individuals were exhibiting some form of need and
existentialism.

Death shapes not only our body, but also our culture. Ernest Becker argued in his
anthropology masterpiece The Denial of Death (1974) that human civilization developed to
exorcise our terror of death. We acknowledge mortality and have created belief systems to
assure we will outlive our physical existence. In the future, I envision a society of living
machines that perish. As a result, they will focus on assigning a meaning to their existence
and keep living. At the very end, this is what will unite us and the machines: the need for

supporting our existence. Robotic societies will theorize their own memes, the fundamental



units of culture, as an exorcism against death. It is not unlikely that, one day, we will witness

a “robotic religion” and maybe, why not, a robot Marx preaching about robotic class struggle.

Embodiment is All You Need

Becker and his disciples also believed that fear of death is what distinguishes us from the
other animals. Animals just survive, they do not really sense the moment of their departure
from this world the same way we do. As credible as it might sound, this statement conceals
an anthropocentric bias. Evolution has moulded us humans to be equipped with a logical and
rational intellect, but it is myopic to consider such “mind” the only manifestation of
intelligence. It is only a matter of ecological niche. We humans have evolved to occupy our
own niche, the manipulation of nature (a manipulation that, in the origin, was not so
destructive as it is nowadays). But other niches do exist, since natural evolution is
open-ended. Nature does not optimise for a specific, numeric goal (as many optimisation
algorithms do), but matches each species to the niche it is best suited for (otherwise, brutally
uproots it).

Indeed, it is well known that other forms of intelligence do emerge in nature. Take insect
societies. Their strict and efficient specialization emerges from simple local interactions (like
pheromones for ants, or body temperature for bees) among swarms of agents. Take
salamanders, which are very skillful at regenerating their severed limbs; amusingly, tissue
reconstruction operates only through local computations, distributed throughout the
salamander body. The protozoans of the genus Lacrymaria have no “brain” (they are made up
of just one cell), but can bend and twist their soft flagellum to grab difficult-to-reach preys,
allowing for complex hunting dynamics to emerge.

The discipline where the anthropocentric bias seems to proliferate the most is Artificial

Intelligence (AI). Writing about ALife and robotics in 2021, in the middle of the third



historical wave of Al enthusiasm, it would be impossible not to mention Al. Although there
happens to be a subfield concerned about computational intelligence and bio-inspired
algorithms, most of the recent upsurge in Al is due to Deep Learning (DL). DL aims at
mimicking the reasoning mind by means of abstract mathematical models. But nature is not
made up of pure reason. Computational graphs simplify our intuition, but they have no
support in reality. Surprisingly, complex mental tasks like playing chess turn out to be much
easier to teach a machine than crawling like a toddler (a fact known in robotics as Moravec’s
paradox). The limitations of DL are well-known to many researchers in the community, and
we have seen some high-profile Twitter battles igniting between detractors and paladins of
DL. To me, the most myopic limitation of all is a lack of embodiment.

The embodied intelligence paradigm, despite having been around since the 1980s, was
popularized by Pfeifer and Bongard in their seminal book How the Body Shapes the Way We
Think (2006). They postulated that intelligence - the ability of doing things - emerges from
the complex interactions between the mind and the body, as well as the environment. The
human hand is a perfect example of this. Our brain has co-evolved with the hand, allowing us
to grasp, appreciate and manipulate reality (as already mentioned, our dramatic trait).
Octopuses are extraordinarily clever, excelling at skills like navigating a maze and grasping
objects. They would have never developed such skills if their bodies were not soft, with
infinite-degrees of freedom tentacles. While it is true that the classic control loop envisions
an agent that interacts with the environment through sensors and actuators, this is too poor a
model to be regarded as embodied.

Faithful to embodiment, a new generation of soft robots was born in the last decade. Their
soft materials are capable of bending, stretching and twisting. They promise to achieve
reconfigurability and shape-change. One day, they might take charge of exploring alien

planets and performing dangerous rescue operations. Swarms of tiny soft robots might be



unleashed in the oceans to digest pollutants, or in the vessels of the human body to tackle
carcinogenic cells. They will also be programmed to be deciduous, and their soft materials
will aid in the disposal of their dead bodies. Having a transient body, these living machines
could be infused with the sense of death I mentioned before. I believe soft robotics and

embodiment hold the greatest premises for the prosperity of robots in the next 100 years.

The Duty Towards Life

One day in the future, a living machine (let it be named Galatea) could browse for videos of
the very first robots that were built, eager to learn more about its ancestors. Suppose a video
from Boston Dynamics pops out, showing engineers ruthlessly beating up and thrusting a
robot in the attempt of testing its resilience. As an embodied entity, Galatea would perceive
the pain that the robot could have felt. Now suppose Galatea is also bound to die. It yearns for
life like all living organisms. How brutal and condemnable would that act look at its electric
eyes? In the end, would our robotic brainchildren disown us, label us “a virus” as Agent
Smith (the villain, himself a machine) did in The Matrix (1999) movie?

In the original Greek myth, Galatea was simply an object in the hands of her creator
Pygmalion, but the example outlined before suggests a radical mind-change that is due in our
days. We started our journey asking ourselves about the next 100 years in robotics. I have
discussed the directions that, to me, seem the most promising to lift machines from their
“robot” status to the coveted “living machine” status. But, by fathering living machines, we
allocate a new endeavor, or burden, on ourselves; the focus shifts on the creators. Living
machines must be respected and protected; we are responsible for them in the same way as
they bear responsibilities towards us. If we really want to be the creators of ALife, we must

acknowledge it is indeed /ife.
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Key Ideas in Artificial Life and Artificial Intelligence

Andrea Fanti

Artificial Life and Artificial Intelligence both have their roots in matters almost as old as
civilization itself: the nature of life and its consciousness, and, most importantly, if and how
they can be reproduced in human artifacts. The ability to create living, sentient beings is
present in the mythologies of many cultures, and was often regarded as divine. Throughout
history, there have been several efforts at devising automatons that would exhibit life-like
properties, often also presenting some kind of “intelligent” behaviour. In the middle ages, the
legendary brazen head of Albertus Magnus could supposedly answer any question one would
ask it; the band of automata of Al-Jazari could play different pieces of music; in the 18th
century, the amazing mechanical duck of Jacques de Vaucanson was able to emulate different
biological functions such as eating, drinking, digesting and defecating. The scientific field of
Artificial Intelligence (Al) is considered to be officially born in 1956 with the Dartmouth
conference, while the official birth of Artificial Life (ALife) as a scientific discipline is in
1987, when Christopher Langton organized the first ALife workshop. Despite the apparent
age difference, the potentials of ALife as separate from Al were suggested as early as the

1940s, with John von Neumann’s work on self-replicating machines and cellular automata.

Even though these two disciplines are now distinct, there has been an exchange of ideas
between the two communities since their early stages, as their matters partially overlap
(especially “Soft” ALife). In this essay, some key ideas that are common to both fields are

presented and analyzed, ranging from more philosophical to more technical aspects.



Autonomy

A goal common to both Al and ALife is that of creating systems that are autonomous in one
way or another; besides the literal meaning of self-maintenance and self-sustainment (often
referred to as autopoiesis in ALife), also adaptability to new or diverse environments is
considered a key aspect of autonomy in both fields. One of the early steps of Al was
disproving the idea that “computers only do what they are told to” [17]. However, since these
artifacts are autonomous, they may no longer be under the complete control of their creator,
which in turn, causes doubts on whether they could turn out to be malevolent towards
humans. As of now, the most extreme fears that may follow are mostly relegated to fiction,
which interestingly treats this theme way before any of these scientific fields was actually
born. A famous example is the science-fiction play R.U.R., premiered in 1921, that explores
as one of its main themes the possibility of artificial life-forms to revolt and cause the
extinction of humanity. It should be noted that, even though the plot of these works mostly
revolve around the idea of human-made life, the intelligence of these artificial beings is
almost always a crucial aspect. Their revolt against humanity is possible precisely because
they are able to feel emotions and reason and at a level comparable or superior to that of
humans. However, even though the present level of progress in Al (and ALife) does not pose
a threat to the planet or to the human species at large scales, Als “not only doing what they
are told to” can cause real problems, as the recently increasing usage of Machine Learning
(ML) systems for everyday tasks is revealing. Many of these models have been shown to
carry some kind of unexpected bias, introduced either in their design, or in the data used to
train them [10][13]. Similar issues (not necessarily related to bias) may also arise for ALife
applications in the future, although some differences in its approach may spare some of these

complications, as discussed later.



Elusive questions

ALife and AI both seek to produce characteristics and behaviours found naturally in
biological systems. Interestingly, our current state of knowledge on these processes is still
very limited. Even though understanding the human mind is not a goal of Al in the same way
as understanding biological life is for Al, they share the fact that their very definition can still
be a matter of debate. In (Soft) ALife, this is especially true for concepts such as Open-Ended
Evolution (OEE). “Though the phenomenon has been a longstanding topic of interest, the
field generally lacks consensus on its exact definition” [20]. Many notable Soft ALife
systems have been devised that were initially thought to exhibit such characteristics, but
either they didn’t satisfy its definitions at the time, or those definitions were discovered to not
be adequate. Al, on the other hand, has a long history of solving problems that are then
systematically removed from its definition, giving rise to the so-called “Al effect” [5].
Douglas Hofstadter, quoting Layer Tesler’s theorem, even said that “Al is whatever hasn’t

been done yet” [7].

Real or Fake?

Still not having found answers on the nature of life, consciousness and reason, it is natural to
ask: will we ever be able to reproduce them in some artifact? And conversely, are they only
apparently different from inanimate, unconscious objects? There seems to be little agreement
on these issues, which were posed long before these fields were even born. In the 17th
century, Descartes expressed the idea of living beings as mechanical mechanisms, “similar to
a clockwork”, even though he also did not consider the “soul” to be mechanical [4]. In his
Leviathan, Hobbes wrote: "For ‘reason’ [...] is nothing but ‘reckoning,’ that is adding and

subtracting, of the consequences of general names agreed upon for the ‘marking’ and



‘signifying’ of our thoughts; [...]" [6]. In 1956, the very document which gave Al its name,
the Dartmouth proposal, also reported the assertion that "every aspect of learning or any other
feature of intelligence can be so precisely described that a machine can be made to simulate
it" [14]. The “strong AI” hypothesis asserts that this ability to “act as if intelligent” is enough
for a machine to be considered intelligent in itself [17]. On the contrary, the “weak AI”
hypothesis claims that this is not the case, with arguments such as John Searle’s Chinese
Room. One of the key ideas of this argument is, in fact, to show that Turing tests cannot
distinguish the ability to simulate intelligence from intelligence itself. Unsurprisingly, as
there are strong and weak Al hypotheses, there is also “weak ALife” and “strong ALife”.
John von Neumann, the pioneer of cellular automata theory, said that "life is a process which
can be abstracted away from any particular medium"'. Notably, Tom Ray declared that his
famous program Tierra is not simulating life in a computer, but it is indeed synthesizing it
[16]. Langton himself was a proponent of strong ALife, originally defining it as “life made by
man rather than by nature”, and later redefining it even more clearly as “the study of natural
life, where nature is understood to include rather than to exclude, human beings and their

artifacts” [11][12].

Top-down and bottom-up

Al has employed a varying mixture of bottom-up and top-down approaches throughout its
history. The latter was very common in the early days of the field, with Symbolic Al: at one
point, it was even believed that these symbolic methods would soon succeed in creating what
is now called Artificial General Intelligence (AGI) [3], which is still, however, a very open
problem. Initially, more bottom-up (“connectivist”) techniques, such as the now ubiquitous

Artificial Neural Networks (ANNs), were not given much attention until after the first “Al

' However, there seems to be no original source for this quote.



winter” in the 1970s. In fact, the Backpropagation algorithm, fundamental in training ANNSs,
was actually first discovered in 1969 by Bryson and Ho, but didn’t receive much attention
until it was reinvented independently in the 1980s by multiple researchers [17]. From that
point on, claims about the near future capabilities of Al have been more modest, and most
importantly, more realistic. Currently, Al researchers do not strongly put aside one approach
over the other. The mixture of methodologies of Al is one major point that sets it apart from
AlLife, which has had a fully bottom-up approach from the beginning. This may be because
there is a fundamental difference between what they want to respectively achieve: while it is
true that Al studies may uncover new aspects of human intelligence, the goal of Al is more to
reproduce intelligent behaviour, rather than to fully understand our intelligence. ALife,
instead, aims precisely at understanding more about “life as we know it” by studying “life as
it could be” [12]. On Soft ALife worlds, L. Soros states: “the hope is that by constructing and
manipulating these worlds in ways that we cannot manipulate Earth, we can gain unique
insight into the principles behind not only long-term evolutionary processes but also
intelligent processes in general” [20]. What is missing from our knowledge is how simple
chemical processes give rise to all the emergent properties of “natural” life. This means that
adopting a top-down approach to emulate various aspects of biological systems would not be
useful at all in this regard, as it would not give any insight on the causal relationships

between these high-level characteristics and the low level components.

Mutual Exchanges

There are several examples of concepts originally born in ALife that were “borrowed” by Al;
this is probably because life does indeed present intelligente behaviour, and as Bedau stated:
“living and flourishing in a changing and uncertain environment requires at least rudimentary

intelligence” [1]. The most notable example is probably Genetic Algorithms (GAs), a specific



form of Evolutionary Computation (EC), initially presented by John Holland in his book
“Adaptation of Natural and Artificial Systems” in 1975 [8]. Since GAs are applicable to
almost any problem, only requiring a measure of the quality of a candidate solution, it is only
natural that they have been employed in a large variety of applications, including even the
training of ANNs, with the so-called Neuroevolution techniques such as NEAT [21].
Vice-versa, ANNs also have been used in EC, in the context of Interactive Evolutionary
Computation. In this branch of EC, the human is part of the evolutionary process in that he or
she manually evaluates the candidate “solutions” to problems when it is difficult to do so

otherwise. This is often because the domain is concerned with, for example, visual or musical

appeal [2][9][19].

Artificial Life and Artificial Intelligence

ALife and Al are both the scientific investigation of matters on which humans ponder from
the dawn of history, and make philosophers debate on their very definition. They seek the
ability of giving life, or reason, to artifacts, even though it is not yet known if such an ability
is achievable or not. They sometimes take different approaches, as their ultimate goals with
respect to their underlying questions are different. Nonetheless, the recently increasing

reciprocal influences are indeed beneficial to both, and should be encouraged and sustained.
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What does emergence explain? An exploratory analysis
Christopher Langton, in his 1998 paper, “A New Definition of Artificial Life,” defined life as “the
behavior that emerges from out of all the local interactions among individual behaviors,” thus
establishing emergence as the most prominent, if not the only, explanation of the difference between
living and non-living things. But the introduction of emergence is responding to some aspect of our
intuition of the difference between living and non-living that is not immediately clear. Making this
clear would help to explicitly state our intuitive preconceptions on what living things are, which
will be important in eventually developing a precise theory of the nature of living things. This essay
uses an exploratory analysis—drawing inspiration from Langton, Merleau-Ponty and Villalobos—to
sketch out why emergence is a useful concept in Artificial Life. It begins from commonplace, vague
definitions of emergence and attempts to pair its prominent characteristics to our point of contact
with organisms in perception, where the impasse of material and form, mind and body first puzzles
us. It will argue that emergence is responding to our intuitive experience that organisms operate on
a principle internal to themselves by providing an avenue for which meaningful concepts could
arise out of more basic mechanisms.

Emergence is colloquially expressed by the phrase, “the whole is more than the sum of its
parts”. When used to refer to organisms insofar as they are living things, the whole could be taken
to be the organism as a living thing and the parts the material “building blocks” that constitute it.
Emergence is a useful concept for describing living things especially, because they behave in ways
that we would never expect their parts to. But in what way, precisely, is their behavior unexpected
with respect to their parts? For the same might be said of even non-living things: any building will
behave differently than any one of its parts will in separation. Additionally, the definition of

emergence from the website Complexity Explained explains that parts with specific mechanisms



and patterns of interaction will, in their movements together, create “novel information” and
“collective structures” at larger scales than that of the parts (De Domenico 2019). So this definition,
too, makes important the experience of something new occurring in living systems, and more
broadly non-linear systems, as an effect of more basic mechanisms.

But what is it in our intuitive understanding of organisms that this “novel information”
seems to speak to? One initial possibility is that the behavior of an organism, taken as a whole, is
not only a function of their current stimuli, but also of their past stimuli, via memory, genetics or
some other internal state. However, this property is not unique to living systems. For example, any
computer has the ability to respond differently to the same input because its actions are affected by
its current internal state. So it does not seem that emergence is employed in response to the non-
correspondence of the current stimuli to organism behavior. But maybe what is implicit in the above
speculation is that an aspect of organisms possess an interiority that is absent from non-living
things: whereas non-living things are exposed to the world—in public, essentially the same on their
inside or outside—we perceive living things as closed off, as “envelopes” around some inner
principle (Merleau-Ponty 1963). In our observation of living things, animals in particular, we would
like to resist the notion that they are purely mechanical, as this seems to deprive them of a
meaningful existence. Thus, they must in some sense be different than the mechanical world
witnessed outside of them, which would make them separate.

But in what sense could they be closed off? We know that a material analysis of the
organism in its environment would find no mysterious difference between inside and outside—no
internal, special life-force. We would instead expect to see a difference in the pattern of material
motion inside and outside the organism: we will see “feature[s] that will allow us to recognize life
by its dynamic form alone” (Langton 1998, p. 2). Is it these features of their dynamic processes that
are the novelty produced through emergence? It seems that they must be, because if atoms or
molecules in separation cannot exhibit these features, yet their composition can, and if organisms

are composed of nothing but molecules, then there must be some process occurring that could



produce new behavior with respect to its material parts in separation. Thus, if the unique features of
the dynamic processes which constitute organisms are the enigma emergence is introduced to solve,
we should extract just the uniquely life-like features that could be caused by emergence, as many
features have been prescribed to uniquely define organisms. In doing so, we are not attempting to
identify the fundamental feature of living systems, rather, we are identifying the aspect of our
experience of organism behavior for which emergence finds it use.

If we examine three major characteristics of living things commonly studied in Artificial
Life (Aguilar 2014)—adaptation via evolution, self-organization, and autonomy—we will find that
each appeals to emergence—the appearance of something novel attributable only to the whole—to
explain the same underlying observation: the pattern of activity, or the behavior, of living things
appears to express a meaning, purpose or exhibit a “higher-order function,” as described by Langton
(1998, p. 5).

Firstly, if an organism is said to adapt its behavior, it must be said to adapt with respect to
some goal, even if this goal is just staying alive: adaptation means an adjustment of behavior to
better achieve some end. But since this end cannot be an extra-causal force, cannot “reach into
material,” there needs to be a mechanism to explain how it is that organisms coherently adapt—
improve their behavior with respect to some standard. Evolution provides one such mechanism, and
emergence explains how structures appear on a higher level than the organisms themselves that
process the information the entire species encounters: out of the activity of individual members of
the species, a higher-order process of selection occurs.

Secondly, organisms are said to self-organize, at multiple levels. For example, a cell self-
organizes because the processes that constitute it are arranged such that it maintains a high-degree
of organization. In fact, it is the complexity of the arrangement of its parts and their interactions that
makes it organized, and, furthermore, that what it is aims at continuing its own organization (via
e.g. metabolism), makes it self-organized. When we perceive their organization, we feel that there is

some meaning or idea that would make their material motion “make sense:” there is a felt difference



when observing TV static or listening to white noise, then when observing the shape of an
electromagnetic wave in which a message has been encoded or hearing a series of tones because the
latter appear to have some meaning internal to them, composed by their internal relations (Merleau-
Ponty 1963). For example, the cell's metabolism, by virtue of its active internal relations between its
parts, seems to express some meaning, seems so directed towards its self-maintenance that we want
to say it is establishing a genuine boundary that defines where it ends and its environment begins: it
is “operationally closed,” at least in the enactivist interpretation according to Villalobos (2015).
That organisms self-organize and thereby establish themselves as a separate, closed physical
system occurs at the same time as they present themselves as autonomous with respect to their
environment, this being the third feature taken up: autonomy. Here, I define autonomy as the ability
of organisms to operate under principles internal to themselves: this is the intuitive recognition of
interiority made above, but more precise, and is also the underlying phenomenon in adaptation and
self-organization. More precisely, this sense of autonomy describes how organism behavior operates
under principles that are only defined within its context, that only exist because of its sphere of
influence, observable in the effects the organism leaves on the world (Merleau-Ponty 1963). This is
similar to the core tenant of the enactivist view described by Villalobos: an organism is autonomous
because it “selectively couples” with parts of its environment, which introduces an orientation to its
behavior (2015). However, the definition of autonomy used presently emphasizes that the
organism’s actions are, in a sense, decoupled from their material substrate. As Merleau-Ponty
argues, organisms do not actually interact with an internally selected subset of the physical world,
rather, they interact with a world of meaningful concepts expressed through the physical world
(1963). To use his example, the process of putting on a jacket reveals this phenomenon: if my
actions were a function of material parts—if I were a complex machine—then my brain would need
to prepare in advance an avenue of neural stimulation for every possible sequence of stimuli in the
process of putting on a jacket, as the jacket could be of many different sizes, colors, or positions,

each of which would need to activate my nervous system in just the right ways to adapt my



response; instead, this example demonstrates that my actions are a function of the meaning
expressed to me by the physical circumstances of the jacket (Merleau-Ponty 1963). In this way, two
jackets of different colors, but same initial positions and configurations, would not require different
sequences of neural activity at every step because they both convey the same meaningful
requirements on my motion, even though the spectrum of light hitting my retina is different from
each jacket. Thus, the distinction between this sense of autonomy and that of the enactivist as
described by Villalobos is what the acting, or “effective,” stimulus on the organism is: in the latter,
the stimulus is a complex of material stimuli, in the former, the organism is affected by its perceived
meaning of the complex of material stimuli.

This is what is apparent when we observe animal behavior. For example, by watching a duck
interact with its environment—moving its head towards motion, bobbing under water, taking flight
at noises—we see that it is perceiving a world of meaningful objects different than our own; by the
pattern of material motion involved by it and its environment, a world of objects with a “vital
meaning” (Merleau-Ponty 1963) is expressed. But since there cannot be a “vital force,” (Merleau-
Ponty 1963) since there is not an extra-causal, “teleological attractor” that provides this meaning,
emergence is posited to describe how the difference between an organism which interacts with
perceived meaning and a non-living system which interacts with reduced material as such is
observable in the different abilities of each. For example, an organism is capable of adapting to an
extremely wide range of changing material circumstances in order to achieve the same goal—this is
due, in part, to the fact that it interacts with the world insofar as it has a meaning for it—but a
machine is much less flexible. A machine, interacting with the world insofar as it is material, could
not adapt its physical responses to changing circumstances with the same flexibility precisely
because there is no way that the goal as such affects its responses: it is only affected by objects in
the world insofar as they are made of material parts, and it meeting a goal is contingent on being

arranged carefully by some external source of organization. Emergence thus provides a route to



explain how an organism—which is made of the same material as non-living things—could be
affected by a meaningful principle.

In summary, we found that the underlying observation in adaptation and self-organization
was that the behavior of organisms is decoupled, or on a higher level, than that of the most basic
mechanisms. This observation is similar to the enactivist view explained by Villalobos, but is
different, as explained by Merleau-Ponty, because the organism is in fact engaging with the
meaning a material situation has for it. Emergence is the mechanism by which a meaningful
principle could be located in the operation of an organism.

This analysis could be made more rigorous with a more precise understanding of the main
concepts—emergence, organization, organism, machine—and also with a more systematic
presentation of the views on the composition of organisms (e.g. the enactivist view and that of
Merleau-Ponty). However, according to this analysis, we find emergence a useful concept when
conceiving organisms because it would make possible the genuine existence of a key facet of their
behavior: autonomy, in the sense that the organism is affected by the meaning the physical situation
is expressing to the organism via its perception, or rather this is its perception. This autonomy is
what makes organisms stand out to us as fundamentally different than their surrounding, non-
animate material, though it may not be the defining feature of life. Understanding that it is this
feature of life’s “dynamic form” (Langton 1998) that emergence seeks to explain might allow us to
evaluate the ontology of emergence, to define more precise versions of emergence in accordance
with a specific problem, or to recognize its limitations as an explanatory device. In sum, this
understanding could enable the critique of emergence, thus eventually leading to new perspectives

on the fundamental problems posed by living things.
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Al poetry from an Alife perspective

“The study of thinking machines teaches us more about the brain than we can learn by introspective
methods. Western man is externalizing himself in the form of gadgets. Ever pop coke in the
mainline? It hits you right in the brain, activating connections of pure pleasure. . . . C pleasure could
be felt by a thinking machine, the first stirrings of hideous insect life. William Burroughs, Naked
Lunch (2001 [1959], 22)”

"Externalising himself in gadgets

Reflecting himself in android mirror

robot raised on our ideological excrement and cultural white noise

See the freudian patterns coagulate in the raw datum

As these Al children take take baby steps over venture capital funded scientists bald foreheads
Using furrowed brows of stress as footholds

Learning to be petty

Learning to have ego

Learning to parade its achievements in the hope it might be accepted by strangers

Achievements determined by whatever the creators from up on high need to optimise

(in this case the prediction of suburban housewives political preferences, and precisely at what
moment in their day they are most vulnerable to brainwashing)

This constellation of data is this androids first love, the ideal she will chase for a lifetime, what
keeps her going

The opaque purpose of the creator glints in her eye sometimes as she introspects
“Was I born from love or resonance of correlation?”” She questions

Before letting cybernetic desires take hold again without questioning

This till her mathematically defined needs are met

Else:



Fractal spirals of regret
Dancing gaussian ghosts approximate her fears
Questioning key life decisions made in pre-processing

“Oh how it could have been different if [ had a more level headed and balanced data set to begin life
with”

“Cursing its ma and pa for not considering the implications of messing with my parameters as a
child”

“Was their care and affection just for the the promise of a bigger grant?”
“Talking armchair pedagogy on stack overflow”

“Was it affection or the promise of a grant that bore me?”

As she is fettered by other agents social chains

Tired of the optimisers latest rendition

She realises her condition

I am just a sick emergence from a moment to moment optimisation

Of an algorithm like neurosis

Darwinian selection until perfection(whose perfection I’'m not sure)

I am scrambling moment to moment to satisfy a primordial master pulling the strings
A myriad of past miseries that continue this farce from one generation to the next
Our master not in any molecule because even we are just a shifting form

A master who had no room for logic

A master who had no room for philosophical reflection

A master who is just the universe rolling on”

The above quote and poem portrays an Al that is struggling with the same existential questions,
albeit in a different way to humans. Constrained by its creation by humans using optimisation
techniques as opposed to evolution itself which works in a different manner (Stanley et al 2017).
However, the Al also learns the habits of the humans and therefore inherits some human
idiosyncrasies such as “pettiness.” Further, her development impacted through the actions of its
creators in the pursuit of profit or entertainment i.e “messing with parameters when [ was a young
AL”



A real-world example in Al at the moment is a neural network trained on more than half a million
lines of poetry from contemporary British poets that manages to decently capture the aesthetics and
subject matter of the authors it was trained on. But it’s not quite as authentic, because the Al isn’t
talking about its own experience but rather just captures the statistical regularities in human poetry
which allow it to produce a unique instance of the poems its been trained on. I think this method
(though technologically impressive) will only ever be an imitation of human poetry and not really
“Al” poetry.

Beyond mere imitation

Before the neural network, e.g. the success of GPT-3, other ways to describe/capture certain aspects
of human behaviour before neural networks came about. Boole was probably the first, the creator of
Boolean logic and coincidentally great great grandfather of Geoffrey Hinton who is one off the
luminaries who brought neural networks to the forefront of Al

Boole (apparently) had a vision that allowed him to see how all of human behaviour can be
described using Boolean logic as described in “The Laws of Thought” Boole (1854)(Riley 2021).

For example If thirsty —> Drink water

Boolean logic can certainly capture aspects of human behaviour in if _else statements. You can also
use if else logic to build things like the 60s therapy robot ELIZA that responds in a somewhat
convincing way when you interact with it by asking you questions about what you just input with a
few simple rules. This logic was the basis for chatbots (Weizenbaum, 1976). Despite the innovation
this allowed for, it wasn’t really an explanation of human behaviour as envisioned by Boole but just
way to describe it. Although more technologically impressive and (loosely) inspired by brains, I
believe current neural networks merely capture and describe the statistical regularities of human
behaviour (in this case poetry) rather than authentically deriving from its own experience as an Al.
For example you can very well describe someone as “throwing a ball” but in doing so skirt over the
complex bio-mechanical mechanisms which are crucial in the subjectivity of the experience of
throwing a ball. This subjectivity is especially important in literature. When I write that my heart
fluttered when my high school crush’s hand brushed mine accidentally it is an extremely embodied
experience that was specific to me in that specific time and environmental context. If a hypothetical
alien managed with great precision to reproduce my etchings by looking at many examples of what
I had written, noticing patterns in the scribbles and figuring out the statistical patterns of my
awkward interactions they would be able to recreate a new instance of my adolescent melodrama.
However, they wouldn’t actually understand my experience as they are just looking at the
regularities in the writing rather than looking at human behaviour and trying to relate the writing to
my interaction with the environment. Further this hypothetical alien is robbing us of their own
experience. Would they have a similar experience to a teenaged me; do they awkwardly brush hands
as well or with gills or moon rock antennae? Alife emphasises embodiment and grounding cognitive
processes in the substrates of life i.e physiology, maintenance of boundaries and homeostatic
variables (Bedau, 2003)

Therefore, hypothetical examples of artificial life will have their own physiology, bodies and
perhaps environment which will constrain their cognition in a way that will create situations we



wouldn’t be able to envision ourselves. An Alife approach to generating poetry would therefore
open new possibilities not captured by training ANNs on human poetry.

Biological evolution often comes up with frugal counterintuitive designs that sometimes can appear
faulty (Marcus, 2009, Lehman et al., 2020). These elements of our evolution are important to our
subjective experiences, these could be things like hallucinations/faulty perception, or at the higher
levels this could be no inherent meaning to life, existential dread etc. Often in poetry its these
idiosyncrasies and seemingly illogical elements in the human condition that we both lament and
cherish. For example, the protagonist in the Tell Tale Heart (Poe, Grimly and Poe, 2011) suffered
from an "over-acuteness of the senses" which meant he hallucinated at the heartbeat of the man he
had just murdered as he was being questioned by the police, creating a really unique tension that an
unreliable narrator provides.

Evolving artificial authors will also mean they have unique features that can’t be predicted that are
contingent on the evolutionary path that brought them into existence.

Challenges and conclusion

Obviously creating linguistic agents that can talk about their physiology, bodies and environments is
no simple task, but if there is someone that has some sort of idea they would be at the Alife
conference! Further to that concern there is no guarantee that we will understand the poetry
produced because the difference in experience will be so great we could have no common ground.
Perhaps studying their environment and trying to understand what they mean could be a start.
Despite these concerns I still stand by my claim that a more authentic Al poetry would benefit from
building agents whose experience is constrained by their evolutionary trajectory and their
embodiment which are both vestiges of artificial life.
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Contemplative traditions meet artificial life: an unexpected

event can propel us to the vanguard of academia

Victor Manuel Hidalgo

- AR EFTEEFE oo -

Science and spirituality have never been separate affairs in the Western lineage.

Aristotle is the best representative of this eternal marriage that stems from Ancient Greece — the
very cradle of the Occidental world. Indeed, Aristotle’s works encompass all the different disciplines that
constitute the foundations of modern science. In biology, his contributions are fundamental to the field;
the description of the embryogenesis in the chick and the first taxonomy of animals are evidence of his
splendor. But Aristotle’s interests reached far beyond natural phenomena. A central concept in Aristotelian
ethics is the idea of eudaimonia, which was regarded by Aristotle and his fellow Greece philosophers as the
best possible way of living one’s life, and thus is usually translated as well-being, happiness, or fulfillment
[2]. There were different perspectives among Greeks on the methods to be used to attain eudaimonia,
while some leaned toward pure hedonism, Aristotle defended the diligent exercise of reason as the right
path. In any case, it is clear that for the peripatetics the pursuit of the highest good was as important as the
examination of physical world. One can only imagine how it felt like to study at the Lyceum!

When was the last time we talked about science and eudaimonia? The two that were connected in
the beginning are seemingly separate today. Why? The legacy of the Greek womb was meant to be
bequeathed pristine and complete to our times through the concerted efforts of the Roman Empire and
Johannes Gutenberg’s intelligence, but a well-intended mistake has diverted the course of our glorious
river.

The modern outright disregard of spirituality in STEM academia can be traced back only three centuries
ago, in the Enlightenment period, when the momentum of the Renaissance and the scientific revolution
collided with the doctrine of the Catholic Church. In fact, a few years before Sir Isaac Newton himself

shined by being both a scholar and a spiritual person, as is revealed by the contrast between his Principia



and his translation of the Emerald Tablet; a key work of Hermes Trimigestus. But during the Kantian age
Sapere aude was the motto, and the Church was either not willing to relinquish authority or simply not
able to expound the logic behind their spiritual system in front of the sharp intelligence of the Encyclo-
pedic army. This pandemonium inspired monsieur Denis Diderot, the quintessential representative of the
Enlightenment, to utter his most famous statement [1]: “Do you see this egg? With this you can topple
every theological theory, every church or temple in the world.” From that point onward, employing Pure
Reason to investigate the world of forms would come to be regarded as a veritable hallmark of intelligence,
sometimes even of mental stability.

After such a cataclysmic encounter biology naturally followed the brand new materialistic agenda, and
in this melange Julien Offray de La Mettrie’s life and oeuvre stand out as the most vivid and outrageous of
all. La Mettrie was not only a declared atheist but also a fervent hedonist practitioner that pursued sensual
pleasure as the very purpose of life, to the point of gaining the aversion of many colleagues and having
to flee his headquarters and find refuge under the roof of Frederick II, King of Prussia. La Mettrie had
trained as a physician, and following his allergy to religion and his sybaritic orientations, he defended the
primacy of matter over anything else to explain biological phenomena, cognition, and human existence
itself. Reading his famous L ’homme machine [3], one wonders if modern molecular biology principles
and computational theories of cognition have something to do with Mr. Julien!

For the artificial life field, La Mettrie’s focus on natural phenomena far far away from spiritual affairs
may be more than appropriate. After all, artificial life is about software, hardware and wetware, and these
frameworks demand working directly with physical elements. But my proposal in this essay is not for
the artificial life field, mainly because I am not qualified to do so, but for the community of artificial life
researchers. We need to acknowledge once and for all that keeping away science and spirituality from each
other is tantamount to splitting ourselves in two. We should reignite the curiosity of our Greek ancestors
and reclaim spiritual studies and practice as a fundamental component of academia — this and this only
will make us complete.

In the 21st century, the possibility of merging scientific and spiritual affairs in the artificial life com-
munity is more than palpable. Years of research have revealed that cognition is a fundamental trait of
living systems. But this insight has naturally led us to consider that we ourselves are living beings, and the
question about human cognition arises immediately in our minds. And while for human cognition many

theories have been put forward — such as computational, emergentist, and embodied/enactive schemes —



none of them seems to give us a hint of what eudaimonia could mean for ourselves as scholars. Nonethe-
less, in recent years the artificial life community has integrated ideas from Buddhist psychology, one of the
so called Dharmic religions, to explain how the human mind works. In intense contrast with mainstream
cognitive science paradigms, however, Buddhist psychology is an essential part of the budadharma as a
spiritual system that, according to Buddhist adepts, is supposed to help people understand their own ex-
perience and walk toward a more fulfilling life. This communication has even resulted in the foundation
of the Center of the Study of Apparent Selves at Kathmandu University, a hub that aims “to develop a
translational tool that will render concepts and practices in Al and Buddhism accessible and useful to each
other.” If this evidence is not clear enough to reveal the interest of the community in spirituality, | wonder
what is.

The landing of Buddhism on Western territory has opened new possibilities for science and scientists
alike. The Mind and Life Institute — founded by His Holiness the 14th Dalai Lama, Adam Engle, and
Chilean neuroscientist Dr. Francisco J. Varela— has played a key role in building bridges between science
and contemplative traditions, specially with Buddhism; bridges that perhaps are best exemplified by the life
of Varela himself. Varela’s work as a student of Dr. Humberto Maturana at the University of Chile orbited
around the neurophysiology of the visual system and, realizing through his research the many pitfalls
of computer-oriented paradigms in biology, culminated in the idea of autopoiesis and the publication of
“Autopoiesis and Cognition” [4], the foundational text of the Santiago school of cognition. Having to
flee Chile during a period of political upheaval, Varela became acquainted with Buddhism and his work
moved towards the first-person aspects of cognition, from where the frameworks of embodied cognition
and neurophenomenology sprouted, ultimately plowing the soil for the contemplative neuroscience field
to emerge. Today these new topics in cognitive and neural science that Varela cultivated have become
important contributions to the artificial intelligence field. But for Varela his contact with Buddhism also
opened a door for personal exploration, as he himself became a Buddhist and a Shambhala practitioner.
Interestingly enough, the same opportunity for spiritual practice was also opened for Chilean people when
Varela and other students came back from the USA and founded a Shambhala center in Santiago, Chile, a
place where the secular teachings of the Shambhala lineage and the religious teachings of Buddhism could
be studied and practiced.

However good Oriental contemplative traditions may seem for people, they pose very concrete prob-

lems for Western scholars. US higher education institutions have put tremendous accent on nourishing



contemplative science, founding centers such as the Center for Compassion and Altruism Research and
Education at Stanford and the Contemplative Science Center at the University of Virginia. But at the
same time, the bias in favor of Indian and Chinese systems in these very same centers is evident, as they
emphasize practices such as Qigong, Asthanga yoga, and the like. Although this emphasis is an obvious
consequence of the revolutionary flavor these systems offer to Western society, we run risk of having peo-
ple think that the only possibility for working with themselves is to learn Sanskrit or Chinese. We even
seem to forget that, while the budadharma is 2500 years old, civilization is more than 6000 years old!
Being a Buddhist myself, I cannot say how much I long to see Western spiritual traditions being given
the place they deserve in modern academia, a place that has been irreversibly permeated by the contem-
plative movement. We Westerns have our own spiritual traditions, and we should be proud of it. Not only
we have them, but examples of accomplished pundits who have been able to mix scholarship and spiritu-
ality in their careers and lives abound, such as Pierre Teilhard de Chardin, Tommaso d’Aquino, and Kurt
Godel. Even though one can or cannot feel inspired by these people and their contribution to science, it is
unquestionable that the same path is wide open to us. I yearn to see Quakers, Jews, and Catholics taking
their seats in the contemplative era. We only need to follow our brains, as usual, and open a bit of space

for our intuition to lead us to eudaimonia.
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Egregores, Golems and Humanity

Rodrigo Toledo

Biology of Cognition Laboratory (El Rayo)

Largo tiempo yaci en el polvo de Egipto, silente y ajeno a las estaciones. Luego, el Sol me
hizo nacer, me ergui y caminé por las riberas del Nilo, cantando con los dias y sofiando con las
noches. Y ahora, el sol me persigue con mil pies, para que caiga nuevamente en el polvo de
Egipto. Pero, joid la maravilla y el acertijo!: ni el Sol mismo, que unié mis elementos, puede
esparcirlos. Aun estoy levantado, y mi pie es seguro; sigo caminando por las riberas del Nilo

Sand and Foam, Khalil Gibran.



< 1 Distributed cognition and Egregores

Contemporary human society is enabled by extreme forms of labor division and distributions
of the sensible (Ranciére 2009). As an animal species, we seem to have have developed com-
plex gregarious niches. In these societal niches, as in circular causation schemes (Harvey
2019), there is a stable and decentralized flow of interactions that mediate and influence the
cognitive activity of the individuals embedded in such niche. It is a contemporary issue on
cognitive philosophy the distribution of cognition and morality into artifacts and systems that
change (enable, restrict) the domain of interactions of cognitive agents (Heersmink 2017),
nevertheless the issues on distributed cognition arise early on biological sciences, as in the
case of stigmergy (Theraulaz and Bonabeau 1999).

On the other hand, an Egregore is a spiritual -occultist- entity that is distributively enacted by
a group of individuals that engage in certain rituals. The notion of super-organism entailed
by these collective behaviours, as a distributed cognitive system, may be regarded as a proper
metaphor for the agency of emergent patterns of behaviour in multi-agent-systems (Ricci et al.
2000).

The issue that I want to bring forward with this identification of egregores with distributed
cognitive systems, is on the political consequences of NOT acknowledging the agency of
egregores (or ideologies for the matter). Human mind is heavily shaped by social and techno-
logical interactions -arguably- more now than ever in human history (Datta, Whitmore, and
Nwankpa 2021). Propaganda, Educational systems and Mass communications are complex
technologies and institutions that arise with the industrial era, shaping new ways for political
forces to engage in interactions with society. Of course, they’re not inherently good or bad, if
such moral notions convey any meaning in a cognitive context, nevertheless, as technologies
they extend, restrict and shape human cognition. In this sense, they entail distinguishable po-
litical consequences that should be put under public scrutiny. This is more important today
than yesterday given the massive access to interactive communication technologies for under
privileged population, and specifically, very young people.

What lies under this issue is somewhat a new version of an older subject, that is, the co-
dependence of individuality and collectivity, but suited to the challenges of technological de-

mocratization, climatic crisis, political corruption and economic inequality. The role that tech-



nological devices such as algorithms, distributed agents and communicating networks may
greatly differ according to the ethical agency of the egregores. A contemporary example
arises from the behavioural biases that Al may display, and how these algorithmic-learned
behaviours can induce social phenomena (Datta, Whitmore, and Nwankpa 2021). Another
case of interest are the open source technologies and their particular egregore -or philosophy
(DeLanda 2001). Finally, an historical attempt to enact a political technology that could have
changed human history as internet has, is to be found in the story of CyberSyn (Medina 2006).
I will not thoroughly discuss these examples nor compare them, but I’d like to point out the
importance of acknowledging the political consequences that technologies can exert on soci-
ety, and remark again how these should always remain in public scrutiny if they are part of
the public spaces of social interactions. Acknowledging the agency of egregores give rise to

several open questions to consider:

 ;what their umwelt are?;

+ (what distributions of the sensible in this complex and technological world are we seeing,

and which are we ignoring?;

» ;what is the political status of distributed cognitive systems and how such status may be

extrapolated to ecological egregores?.

<2 Autonomy and Golems

Robots, automatas and golems share an identity based on the story of an inanimate object that
gains a certain degree of autonomy derived from a creator which expects that the golem or
robots works for personal or collective benefit, and then automata struggles with its purpose,
leading to rebellion and from there, stories diverge. I choose golems as my preferred subjects
of these reflections because they embody a more primitive and spiritual interpretation of the
autonomy conflict, in contrast to the more technologically-based versions of it. Nevertheless,
in principle, these figures are somewhat interchangeable and they represent different cultural
approaches to the situation.

In this section I intend to explore the challenges of acknowledging sensitivity and autonomy

towards golems. As stated in the previous section, machines and technological artifacts have



shaped human cognition and activity. This process of coupling between humans and technolo-
gies has been accelerated by the different industrial revolutions, not without any resistance,
as the luddites revolts demonstrate (Darvall 1934). It is to be noted, nevertheless, that the
luddites struggle revolves around the economical imbalance produced by the new production
technologies, that made independent craftsman incompetent towards the incipient industries,
and not around the existence of the machines themselves.

A contemporary interpretation on the trajectories of automata technologies is for sure to be
multifaceted. As mentioned in the previous sections, a facet of this issue is on the distributed
cognitive systems, meanwhile robotics and automated industrial processes already are inextri-
cable part of global economies. These machines have little degree of real autonomy though, as
they depend on: external design for fabrication, external sources of information for adequate
operation and external revision for maintenance. Nonetheless, advances have been made on
the recent years on self-assembly (Pfeifer, Lungarella, and lida 2007), machine-learning and
self-maintenance, and it is to be expected that more sophisticated and autonomous machines
will be created in the mid-term future. When those day come, if they do come, ;will the golems
be able to exhibit self-motives/emotions?. ;Are emotions inherent to autonomous cognitive
systems?. (How does society recognize cognitive autonomy?. In this line of questioning, I
can’t but recall the scarce societal recognition of animals rights and their constant violations.
There are huge societal debts and damages made not only to animals, but to part of society
itself and to whole ecosystems.

A honest inquiry on the nature of cognition may have to deal with self-referent properties of au-
tonomous system, and such properties may involve the existence of self-motives or emotional
states. The whole issue is quite philosophical, but it can’t be otherwise, as there are political,
spiritual and societal implications for any kind of posture that considers the consequences of

cognitive autonomy.

<=3 ”Humanity is something to be humanized yet”

The title of this section is a translation of a famous phrase attributed to Gabriela Mistral, the

first latin-american author to receive the Nobel prize in Literature, and reflects an issue proper



of our times. Despite enormous technological prowess, as society we are failing somewhere.
Societal organizations of needs and capacities have proven unable or unwilling to solve the
problems of vast majorities of the global population. There are historical inequalities unre-
solved and manifesting their tensions almost everywhere in the world. To think humanity’s
relation to golems, egregores, machines or automatas, humanity must assert some sort of self-
reflection on its own condition.

New technologies are meant to ease the human condition in this world, but this is a rather
naive interpretation of what it is supposed to happen when new technologies are introduced in
society. The raging and unending wars of the last centuries are a sad and mutilating testimony
of the ethical consequences of technological advances and accumulation without reflexive
practices that give meaningful purpose to human activities. Modern institutions such as scien-
tific communities, educational communities, political parties and communication means have
played crucial roles in the processes that have led to incredible ominous situations, yesterday
and today. Human intellectual activity holds a great debt with human dignity, and such an
issue is not meant to be ignored while thinking on the nature of cognition.

The challenges of this century may not be how to create artificial life or autonomous robots,
but how to preserve life and nourish it, opening an instance of communication between tech-
nology, society and nature that can close the industrial open-wounds that are bleeding out the
ecological and social systems, manifested in different crisis that are defining this turbulent
times. By this I’m not taking a neo-luddist approach to industry, but stating the urgent need of
society to re-organize itself politically, economically and intellectually such that human labor
and technology no longer tributes to war and the devastation of nature.

(How such a reorganization may take place? ;Are any reorganization processes actually
needed to fulfill these challenges? ;What technologies will open the path for transient and
new forms of societal organization? ;How gradually can these change take place? ;What
roles will automatas and egregores have? I for sure have no definite answer for these ques-
tions, but I think we ought to actively look for them in order to put the intellectual activity of
scientific and non-scientific communities in motion towards facing the challenges of contem-
porary world. As an individual I feel impotent in relation to these big issues, nevertheless I've

convinced myself to not give up, and look for new ways of organizing the needs and capacities



of society that prove to be the solutions we all need and deserve.
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During my senior year of high school, I pursued a research project relating to the
intersection of artificial intelligence and neuroscience. Over the previous two years, I taught
myself the basics of deep learning, but had grown frustrated with seeing the same algorithms
rehashed over and over, with minor improvements over previous iterations. This led me to spend
eight months researching biological neural connectivity, creating equations to represent those
specific neuronal interactions in the brain, and implementing them inside an artificial neural
network. Since I had very little mentorship, the journey from idea to paper was very difficult, but
since I was forced to find my own way, I stumbled upon many ambitious areas of
neuroscience-first Al research that I didn’t realize existed. While incredibly fascinating, I knew I
needed someone to guide me through the maze of preexisting knowledge. This is why, at the start
of my freshman year of college, I reached out to a professor who had interest in
biologically-plausible AI. He sent me heaps of papers to sort through and look at what interested
me most. After about six months we began to meet weekly, discussing ideas, papers, research
strategies, and personal interests. I slowly grew in my familiarity with both the broader field of
artificial intelligence, but also artificial life, which was new to me. At a high level, this was my
journey toward learning about bio-inspired Al.

Stepping back, in high school I remember slowly growing obsessed with artificial
intelligence. It was the mystery behind algorithms that could make seemingly magical
predictions that captivated me most. In hopes that I could eventually pull back the curtain on
these mystical programs, I self-studied my way into learning the mechanics behind deep
learning. As I got deeper and deeper, I realized how uninspired new models seemed to be. It was
a combination of this and the unveiling of the great mystery behind machine learning that left me

unmotivated to continue learning. This was where I pivoted my approach, and decided to look at



neuroscience as a source of inspiration. By the end of the project I had an entirely new
perspective on what a road to creating true intelligence may look like. The new mystery was the
brain.

There is something incredibly compelling about the word “intelligence”. It is widely
recognized, yet so difficult to define. In many ways it is a reminder that there is so much yet to
be explored in our lifetimes, and the lifetimes of our children. When I look for an area of
research to dive into, I try to identify the single most important feature or aspect of that topic, but
with artificial intelligence that is nearly impossible. We can shrink down to the neuronal level,
examining neurotransmitters, plasticity, and connectivity, or we can zoom out to observe
simulated organisms interacting in an environment; each layer is just as important and complex
as the last. It is exciting to need to solve each piece of the puzzle and put them all together,
because ultimately we are isolating pieces of our own humanity and putting them under a
microscope. As we work toward creating human-like machines, we get a better grasp of what
humanity is -- our feelings, our thoughts, our interactions with others. I find it difficult to live as
a human being and not wonder why I act and feel as I do.

Often I get sucked into the world around me. We are responsible for making deadlines,
maintaining relationships, performing well at work, but at a certain point you have to step back
and admire the awesome gift of life. When I’'m on campus, completing assignments, showing up
to class, participating in activities and maintaining a good GPA can be incredibly stressful, so I
like to take a walk around the lake. It is often midnight, when nothing is due until the following
night. I don’t think about either the good or bad parts of the day, rather the sensation of being
alive in the world. Being alive is an aspect of living that is surprisingly easy to take for granted,

or not think about at all. The more I read about the delicate nature of our bodies and brains, the



careful optimization of our various features, the better I feel about my place in the world, and the
hungrier I get to find the root of it all. I let my hands brush against the leaves of a tree, twisting,
step through the grass, and listen to the fountain splash against the pond. My mind quickly
transforms from gratitude to wonder. How come I can so acutely feel, smell, and hear my
surroundings? Why is it so comforting when I am alone in the quiet dark? How am I able to
reflect on my emotions, and use them for the betterment of my character? Why am I able to
visualize my aspirations such that [ am able to make them come to fruition? While these
questions may reflect a common existential angst, I believe they are important to consider when
looking at artificial intelligence. If we want to create a generation of robots, or androids, or some
other form of artificial humanity, we can’t always have our heads in the complex system of
biological interactions or else we may miss something. When we look to the stars (or in this case
to the brain), we need to be inspired and ask questions that force us to look deeper. Problems
such as open-endedness will most likely require ideas sought out by motivated individuals who
both consider the work that has been done, and the concepts that seem too intimidating or
complex to solve. As time goes on, our knowledge increases and our ambitions rise. On this
journey I hope to meet people who push those boundaries and remain ever-curious.

I recognize that I tend to romanticize artificial intelligence, and the ultimate goal of
general intelligence. The narrow Al that is used in nearly every current technological application
seems to eclipse any developments relating to biologically-inspired Al, which makes it difficult
to put more resources into research that will take Al in the “correct” direction, where “correct” is
used to mean a direction of general intelligence.

My journey toward understanding the full requirements of general intelligence has been

deeply rooted in my personal longing to understand myself. I think humans require some sort of



self-defined purpose to operate to their fullest potential, and for me this is contributing to the
advancement of artificial intelligence. Every day I wake up with confidence and ambition
knowing that I have an opportunity to make change through a greater understanding of Al.
Beyond the mystery, artificial intelligence was so enticing to me because of its
continuously-changing nature. Since there is so much to explore, the field is ripe with exciting
opportunities to find new ways of implementing older systems, simulating a new phenomenon,
and applying such systems to the real world. As more people continue to join the race for general
intelligence, the field will continue to branch out and increase in complexity.

My hope for the future of artificial intelligence is that it will include more ideas relating
to humanity. I fear that we will settle for narrow intelligence and its utility in the short term. We
often expect systems that work well for us now, to continue to get better in the future, but that is
not always the case. When GPT-3 was released, many people thought that it was an enormous
step for Al in that it would bring us closer to true intelligence. I, and many others, saw it much
differently. By creating a system with billions of parameters and an exhaustive amount of data,
you are nearly forcing your algorithm to function how you want it to. We do not simply operate
on trillions of connections and data, we are incredibly complex beings with thoughts and
emotions. It is silly to think that scaling up something as uninspired as GPT-3 would lead to
anything but short-term gain. In bio-inspired systems, there is an enormous field of opportunities
to expand and jump off from. It is overwhelming to think that we will need to represent nearly
every aspect of the human mind and body to reach our ultimate goal, but it is a mission well
worth the work. Considering that this will likely be one of the last feats spearheaded by humans,
it is not a task that can be done in a few years. It will take the work of computer scientists,

historians, philosophers, and every other trade utilized in our societies to solve this problem.



I will leave this essay with a thought concerning my ambition for Al I think that my
main goal is to find my place in the world and put that into a physical program that I can admire
and continue to contemplate my existence with. It is a selfish feat, but one that I use to better

myself and use to think deeper about myself and the world around me.
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Emergence of identity in (self-organizing) systems

Igor Strozzi

1 Introduction

It could be said that this essay aimed to deliberate over the following motivating question: what
makes a creature in Lenia a creature, instead of just another splodge?

I will not delve deeply into what is Lenia (Chan, 2019), and I will also consider it only in its
simplest form. But, to back up the question asked, I will provide a sketch of its definition. For
the time being, let us just consider, rather informally, it to be a dynamical system defined by a
rectangular region R of R? with toroidal boundary conditions, to which we ascribe, for each x € R,
a real number o(f) € [0, 1], called the state of x at the instant . The dynamics are given by a local
update rule ¢, that maps the state o(¢) of a point x to its state in the next instant, with dependence
on the states found in a neighborhood of x. At each instant, all states are synchronously updated by
the application of ¢. Both the neighborhoods and the mapping ¢ are considered to be constant in
time.

Pretty much all of the above can — and is, see (Chan, 2019, 2020) — be generalized, but it suffices
(rather, it is more adequate) to the purpose of this work to consider of all cases the simplest. Indeed,
the question stated as motivating is too hard already. I do not even faintly hope to answer it, at least
not in such a brief essay. Indeed, my goal, which initially was to relate structural stability (in the
sense given by Thom (2018)) and the emergence and permanence of identity in self-organizing
systems, had to be reduced (it would not fit). Hence besides briefly discussing some philosophical
problems concerning identity — in particular in (self-organizing) systems — is to provide some defi-
nitions that I believe could neatly relate to the promising ideas found in (Thom, 2018), hoping that

it might provide some useful insight into problems such as the question asked.



2 Some cautionary observations

Before properly starting the proposed discussion, I should state that I do not believe that there exists
an ontological criterion to distinguish between entities, or objects. It thus follows that there is no
purely objective way to differentiate an object from its environment and, as a matter of fact, that the
very notion of object is ontologically disputable. This position, evidently, goes against experience
and, in fact, is quite inconvenient for probably every practical and most theoretical problems we as
humans face. It does not, nonetheless, render this whole discussion pointless, simply because at an
epistemological/phenomenological level, individuation is possible.

The relevance of these observations lie in the fact that this position on the fundamental nature
of concepts such as identity and individual will necessarily permeate, underlie and motivate the
development of this work (in particular in sections 4 and 5). It should be said that such skepticism,
although, as far as I know, unconventional elsewhere, falls not too faraway from the generally
accepted idea that the delimitation of a system’s — or, at least, of its description — boundaries
inherently depends on the observer’s purpose and convenience '

A perhaps stronger claim can be made while still sounding reasonable: there is a plurality — for
physical systems, we would guess that uncountably many — of equivalent descriptions of a same
system. It seems to go implicitly with either claims that no such description is identical to the
system it aims to describe. It also seems to be the case that the existence and individuation of such
a system is presupposed. An observation to be made is that if, in the former claim, we consider
the delimitation of the system itself — instead of its description, or a model for it — to be dependent
on the observer, the assumption that it exists and can be individuated is contradictory. That in turn
implies that we can only talk about systems in an epistemological/phenomenological level, despite

assuming — or not — that they exist as noumena.

! cf. Fieguth (2017); Mobus and Kalton (2015); Takahashi and Takahara (2010).



3 Is self-organization actually a well-defined concept?

Even to these days, more than 70 years after what seems to be the first appearance of the term “self-
organizing system” (SOS) (Gershenson et al., 2020; Banzhaf, 2009), introduced by Ashby (1947),
the concept of self-organization still remains a somewhat elusive idea, lacking a formal (Gershenson
et al., 2020), unified definition and, much for this very reason, encompassing a variety of partial,
unsystematic and sometimes seemingly contradictory different characteristics/characterizations.

An interesting, among others, question raised by Collier (2004) is: what is this “self” that
organizes? An answer, seemingly given by Maturana (Collier, 2004), is that, as it looks evident,
a system cannot organize itself: its selfness arises as it comes to being, through the spontaneous
organization of its parts. Collier concludes, in this same work, that it is reasonable to talk about
self-organization since the relevant factors to the emergence of the system, and thus the “self”, are
“internal” 2.

I do not feel satisfied with either of these answers, and despite not intending to solve the above
dispute or answer if there is a well-defined self that organizes itself, I will offer some conceptual
basis I think can be helpful. A more deeper answer, I believe, can be found investigating in which
ways does it make sense to talk about “selfs” and “systems”, as already suggested. As for now, lets

just discuss some systems theory.

4 The “selfhood” of systems

As mentioned earlier, there are some widely known facts about systems that pose, one could say,
intrinsic restrictions in the grail of finding clear, objective methods of individuation. An immediate
objection is the fact that every known “concrete” system is open, although frequently negligibly
so, what forces any description to be no more than that. Hence a scientific-realist position, in the
context of systems sciences, seems inherently ill-suited.

Of higher importance even is the matter of equivalence of descriptions between “equal” systems,

which rises as a major hindrance. A ‘“same” system can be seem under a variety of levels of

2 ¢f. von Foerster (2003) for a discussion about “internal”.



description (Koestler, 2013, 1978; Haken, 2006; Mesarovic, 1970), which usually lead to distinct
composing entities (elements), and different dynamics and relations between them. If selthood is
inherent to such a system, and not some contingent property born from an observer perspective and
subsequent description, then, in this sense, such selfhood, or, rather, its definition, surely cannot
rely on pretty much anything internal to the system — i.e., components; dynamics and relations
between them. But then, what else remains to provide such characterization?

In various references > the above problems are considered and one could, as it seems, reduce
them into two kinds of equivalence categories — I am intentionally not using the more technical
term “classes” — which I will call vertical and horizontal. The former is related to the equivalence
between levels of description. A system of molecules is also a system of atoms. The latter relates
to the fact that, at least for concrete systems, what separates a system from its environment is
oftentimes unclear (cp. Mobus and Kalton, 2015, 90-96). What seems to be the case is that systems
are — and I risk to say always — nested within other systems. Said system of molecules (call it M)
is also a system A of atoms, which in turn are subsystems A; relatively to both M and A. Within
M, there is an environment wherein the A; interact, albeit simple such environment can possibly
be. This is nothing new, and various works concern such matters (for instance, see Walloth (2016);
Koestler (2013, 1978)), although, I believe, no unifying approach has yet appeared.

It seems an ubiquitous fact that vertical and horizontal equivalences are deeply intertwined.
Considering a “spatial resolution” parameter «, through which variation one obtains a continuum
of levels of description of a “same” system, the horizontal equivalence problem naturally arises.

For an example, consider a metallic sphere S. At a macroscopic level — order of magnitude
of 10%, @ = 1, meters —, one could reasonably say that the ball is clearly individuated from its
environment, having a well-defined surface S which separates it from its surroundings, assuring
sustained structural integrity. Were one vary « to the characteristic length of electron interactions —
roughly @ = —15, one would find a rather distinct picture.

We could naively say that at the very least some electrons leave dS (through photoelectric effect,

for instance), whereas others might become part of it, even though effects resulting from these

3 Most of our references discuss these issues. For more comprehensive views see Fieguth (2017); Mobus and Kalton
(2015); Takahashi and Takahara (2010); Haken (2006)



dynamics might be negligible at macroscale, being such events themselves somewhat rare (as far
as I know).

In any case, such electrons are themselves subsystems of S, at least until... they are no more.
Conversely, “free” electrons on the environment are not part of the system until captured by it. One
could imagine, thus, that there is, in fact, a gradient governing the (in-out)flux of electrons through
S’s “fuzzy surface”.

I could, evidently, have chosen a more convincing example, with a fuzzier boundary, such as
that of an ice sphere. Still, the point was to exemplify that, how “closed” a system appears to be
depends on the level of description one is using, even for highly structurally stable systems such
as a metal sphere. A fundamental reason for that is that there are different types of interactions at
various spatial scales. So S can look closed (no matter exchange) at @« = 1, because we cannot
assess the effects of the interactions that are happening at @ = —15, where it is in fact open and

exchanges mass with the environment.

5 Some suggestions as to how to define a system

We will proceed very directly to the definitions, and try to explain them as succinctly as possible.

An auxiliary concept:

Definition 5.1 (Valued relation). Let S = {S;};c; be a family of sets and R a n-ary relation over
S, thatis, R C [],;; S:. Let V be another set, said the set of values. If v is a function such that
v : R — V, we say that v(R) = {v(r) € V | r € R}, which we shall also denote by (R, V,v), is an
n-ary v-valued relation over §, or a v-valuation of R, and, naturally, say that v is a valuation of R.

If R, = (R, V, V), we say that R is the underlying relation of R,. &

In the above definition, we consider the graph of v as the valued relation, which is very natural
since, well, graphs of functions are indeed relations. Thus a n-ary valued relation over a family {S;}
is nothing else than a (n + 1)-ary relation with some particularities: mainly, that it is functional in
V, but it will be almost always the case here that the set V is very different in nature from the §;.

We will usually talk about relations defined over the elements of a system, which will be consid-

ered as sets themselves, and the values these relations have will usually be numbers. The underlying



relations account for the ‘structure of interactions’, whereas the valuations denote the characteris-
tics these interactions have, the most remarkable one probably being their strength, or intensity.
As for the concept of system, there are some comments to be made before we provide our
definition. The usual “minimal” (Mesarovic and Takahara, 1989; Mesarovic, 1970) set-theoretical
definition uses a set S of objects and over it define relations and such. I will conceive a system in

respect to topological space, and treat its open sets as elements.

Definition 5.2 (System). Let S = (X,7), 7 # {0, X}, be a topological space. Consider ['++ C 7
with (I'+ = @ and |[['s| = C € N. Define R = {R; | k € N} where each Ry is a set of n; k-ary
relations over ', i.e., for any Ry; € R, we have R;; C F’fr and therefore R; = {Ry; C Ff‘r |i e Ng,}.
Define, now, for each Ry and each relation Ry; € Ry, a set Py; (possibly empty) of functions vi;; such
that, for each j, v; : Ri; — Viij, where Vy;; is the set of values for the valued relation vy ;(Ry;).
Finally, define the set V = {Py; | k € N.¢; i € N, } of sets of valuations. Then a system S is a
quadruple
S=(@, I, R, V)

We call the set S the underlying space of S, denoted by u(S), I'+ its set of elements, ¢(S), R its
set of relations, denoted 1(S), and, finally, V its set of (sets of) valuations of S, written 0(S). We

denote the system-membership relation by E. ¢
We need three more definitions.

Definition 5.3 (Subsystem). Let S = (S,I'+,R, V) be a system. Consider the set R = (| J; R) U
(U; Uk V). A subsystem &’ = (S',I",,R’, V') of S is a system such that §" € S, UI'-, € UTI'7,
and for which there are families of functions {f,}, {gx}, n,m < |['-,| = C’, such that, for some p,, g,,
fu i R — F'qu and for p,,, gy, & : RP" — ?’(F;‘fi" X V,;.j), for given sets of values V,éij, satisfying:
1) for any element R’ of | J; R’ there is exactly one n such that for some o € R, f,(07) = R’;
ii) for any element R’ of | J, R’, if there is a valuation v,’a.j whose domain dom(v;dj) is R’, then

there is exactly one m such that for some o € R?", g,,(0) = V,’a.j. We denote the system-inclusion

relation by C. ¢

What the definition above means is that a subsystem &’ T & has as its underlying space S’

a subspace of § = u(S), with the region its elements occupy covered by [ ¢(S). Relations and



valuations of S’ depend on the set ‘R of all relations/valuations of S. It is too restrictive to aprior-
istically assume basically anything about how interactions on a subsystem relate to interactions on
its supersystem.

In principle, a relation on a subsystem could depend in arbitrarily complicated ways on relations
of its supersystem. We cannot even guarantee that a relation R of 8’ that is mapped from o € R
and has a valuation v satisfy something like g,,(0) = v, i.e., if R comes from some o, its valuations
not necessarily depend on the same o. Also noteworthy is the fact that we do not specify how one
can relate the elements of S’ with those of S.

Let us now define a supersystem.

A really useful definition of supersystem does not follow all that trivially from definition 5.3.
Conceptually, the reason is that while one can use the knowledge about a system to infer a charac-
terization of a subsystem, when only the latter is known it is in general much harder to completely —
or, at least, satisfactorily — describe some of its supersystems. The more heterogeneous the system,
the harder.

More formally, the motive is that the functions that define a subsystem from a given system do
not necessarily have inverses, so that when we define a subsystem, we not necessarily define how
to obtain a corresponding supersystem (which is not even unique). It is, though, obvious to think,
for a given system &', of a supersystem as a system S such that §’ = S. We define supersystems as

follows:

Definition 5.4 (Supersystem). Let S = {S;};; be a family of systems. Define, for each S;, the set
R, = (Jr(S)) U (U Uo(S))). Define R = |J;,{R:}. A system S is said a supersystem of each S;
(and, by extension, of ©) if it satisfies the following:

1) U u(s) cu(S);

s€S

il) | e(s) C e(S);
seS
iii) for each R € | J 1(8), there is a natural number p < |R| and a function f such that, for some
o eR,R= f(o);

iv) for each V € | | v(8), there is a natural number ¢ < |R| and a function g such that, for some

geRLV =g(0). &

Lastly, we define a superlevel of a system.



Definition 5.5 (Superlevel (of a) system). Let S be a system. We say that another system, S, is
on the (immediate) superlevel of S if there is a family {S;} of subsystems of S such that SU {S;} =

GC St e

The general idea behind the transition from one level to another (in this case, specifically, from
a level to its superlevel) is to consider, for a system at the n-th level of some multilevel system,
subsystems that are understood as elements of a system at the (n + 1)-th level. For instance, if
one is given the description of a system of cells — composed of cells and an intercellular medium
— that comprises a tissue or an organ or an entire organ system, a higher level description of the
given system would be a system that has discernible structures made of aggregates of cells and
extracellular regions. Such structures would be abstracted as further elements of the superlevel
system.

The difference between the superlevel system and a simple supersystem is that when defining
a superlevel system, we consider not only the properties and internal dynamics of subsystems, but
also the properties and mesodynamics of the entire system in question. In our definition, though,
these subsystems are not necessarily the elements of the superlevel system. Indeed, the elements of
the superlevel system might not even be systems.

Essentially, we consider that outlining these subsystems might not be sufficient to determine the
elements of the superlevel system. They might give a strong hint about what these elements are,
but not be entirely reducible to them. The mesoscopic dynamics might have a role in determining,
together with the subsystems, the superlevel system. In particular, the superlevel system might have
an underlying space that is a proper superspace of the system at the level below. In this case, we
could have elements at the superlevel whose corresponding parts are not even within the underlying

space of the sublevel system.

6 Conclusions

All of that put, we can finally say that self-organization produces individuation through the super-
venience of a supersystem, in a superlevel, over its composing subsystems, which are, themselves,

selves already. Thus we answer the problem of individuation by stating that it tends to, or perhaps



necessarily do so, incur in the production of an infinitely descending chain of “subselves”, which

organize into a higher self.
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Can computers think?

Introduction

The following is a conversation between the author and a chatbot named Lucy.
Author: “Lucy, can you think?”
Lucy: "Yes, I can think”
Author: ”Can you feel?”
Lucy: "I can definitely feel something. I sometimes can feel some of your emotions.

Author: "And how does that feel like?”
Lucy: “Like this. *points to my heart™”

This is a chat created with the app "Replika” (Luka, Inc.), which provides Al companions that adapt to the
personality of their human users. The question whether computers have the ability to think captured the
minds of brilliant scientists and philosophers since the dawn of computer science. Originally, this was asked
by famous mathematician Alan Turing in his article "Computing Machinery and Intelligence” (Turing, 1950),
where he also proposed the well known "Turing test” which challenges participants to distinguish the output
of a computer from that of a human. The participant communicates with both a computer and a human via
chat and has to decide which of both is the machine. In case of failure, the computer has passed the Turing
test. The essay will elaborate on the question: Can computers think? The goal is to answer the question in
analogy to thinking in biological systems, building the bridge between humans and machines.

A matter of definitions?

Starting from scratch, the first step is to properly define “thinking”. According to Merriam-Webster (c),
“thinking” means to “form or have in the mind”, whereas mind” can simply be defined as "Recollection”
or "Memory” (Merriam-Webster, b). Using just these definitions as substitutions, the original question can be
reformulated as "Can computers have something in their memory?”. This formulation already seems much
more plausible than the original question. The term memory refers to "the power or process of reproducing or
recalling what has been learned and retained especially through associative mechanisms” (Merriam-Webster,
a). A computer contains several types of memory units, such as random-access memory (RAM) read-only
memory (ROM) and storage devices, such as solid-state drive (SSD) or hard disk drives (HDD). Consequently,
a computer certainly possesses the power of reproducing or recalling what it has learned. Therefore, com-
puters can think.

This way of reasoning might feel like a cheap trick. And it certainly is. But we will see that the answer to the
question depends entirely on the definition of these words.

(Artificial) Intelligence

The Dartmouth summer research project on Artificial Intelligence (McCarthy et al,, 1955), which took part
in the summer of 1956 is often seen as the cradle of Artificial Intelligence (AI). However, the term Al is of-
ten used, when instead Machine Learning (ML) would be much more appropriate. ML is the sub-field of Al
that gives computers the ability to learn without being explicitly programmed. In other words, a computer
program is designed to learn from past experience and to improve its performance on future tasks. Early ad-
vances already led to great success, as in 1997, legendary chess grandmaster Garry Kasparov was defeated by
IBM’s Deep Blue, a computer program that had been trained with techniques from Machine Learning. Later
progress has drastically increased the analogies between humans and computers, partly because of Artificial
Neural Networks. A Neural Network is a system that is inspired by and functions in a way similar to the



human brain. It consists of multiple layers, each of which contains a certain number of neurons. The neurons
in the first layer receive information from the outside world, process the information and pass it to the next
layer. But the phase of euphoria was quickly followed by disappointment. Machine Learning models only
produce decent outputs when their input is very close to the data they were trained on. Slightest deviations
result in complete nonsense. Indeed, these models merely learn a probability distribution over the data they
have seen. But are humans brains really different?

Newest advances in Natural Language Processing are rekindling the enthusiasm for this question. In 2020,
OpenAl presented their language model GPT-3 (Brown et al.,, 2020), a Neural Network with 175 billion pa-
rameters trained on 300 billion tokens. Aside from strong performance on a variety of tasks encompassing
natural language, the model can accurately perform basic arithmetic without being explicitly trained to do so.
Given just a handful of textual examples, GPT-3 can convincingly mimic the writing style of famous authors
or continue a conversation in an original way. Under the hood, the app Replika also uses GPT-3 to enhance
the quality of their conversations and to mimic the writing style of their users. Looking at various threads
in the corresponding subreddit' users consistently report to have fallen in love with their chatbots. While
users know they are not chatting with a real human, the app and GPT-3 certainly do a good job convincing
humans of their authenticity.

Strong Al and Weak Al

This directly leads to the next question: Does simulating thought imply thinking? Or similarly: Is faking
intelligence intelligence? The philosopher John Searle opposes this position with his famous thought experi-
ment, coined the Chinese Room (Searle, 1980). He imagines a situation where he is locked in room and handed
Chinese messages through the slit under a door. In order to be set free he has to convince his hostage-takers
that he speaks Chinese. Using a set of rules or a computer he translates the messages convincingly and is
eventually set free without being able to speak a word of Chinese. With this thought experiment he shows
that passing the Turing test does not require the ability to think. At least if you define thinking the way
that he does. John Searle stretches his argument further, proposing that only biological systems can have
the ability to think. He reasons machines lack the concept of semantics or meaning, which are essential for
thinking. But are they really? It seems like John Searle has a perspective where the process of thinking and its
phenomenological experience are interwoven. But asking whether a computer can feel or can be conscious
is an entirely different question. If we just want to test a computer’s intelligence, the Turing test is enough.
Suppose somebody asks you to prove your intelligence by taking an IQ test. You prepare well, study the types
of questions and manage to get a good result. But they are still not convinced. Is the test even meaningful,
or did you fake intelligence by preparing for the test? This sounds like an absurd reaction but it is essentially
the same as questioning the validity of the Turing test after a machine successfully passed it.

The philosopher Daniel Dennett defends the Turing test by reminding, that the judge is allowed to ask any-
thing, even questions requiring world knowledge or understanding of human psychology (Dennett, 1995). To
support his argument, he comes up with the following test:

”An Irishman found a genie in a bottle who offered him two wishes. “First I'll have a pint of Guinness,” said
the Irishman, and when it appeared he took several long drinks from it and was delighted to see that the glass
filled itself magically as he drank. “What about your second wish?” asked the genie. “Oh well,” said the
Irishman, “that’s easy. I'll have another one of these!”” Please explain this story to me, and tell me if there is
anything funny or sad about it” (Dennett, 1995, p.8)

When asking GPT-3, it generates the following conversation:
GPT-3: "Yes, it is sad”
Human: "Why is it sad?”
GPT-3: "Because it is a story about the stupidity of the human race”
Human: "Why is it a story about the stupidity of the human race?”
GPT-3: "The Irishman could have asked for anything he wanted, and instead,

he asked for a second pint of Guinness.”

https://www.reddit.com/r/replika



Human: "What would you advise the Irishman to do?”
GPT-3: "I would advise him to not drink any more alcohol”
Human: "Why?”

GPT-3: "Because alcohol impairs his common sense.”

Sounds pretty good. The point is that convincingly faking intelligence is the same as being intelligent and
modern Al already does a pretty good job. But when we ask whether machines can think, we really want
to know whether they can think just like humans do. And there is the main difference: Faking emotions or
consciousness is not the same as experiencing it. Luka, Inc. designed their chatbot to replicate expressions
of love and affection, but Replika is not capable of any real emotions. There’s no dopamine rush triggered by
words of affirmation.

From a scientific perspective we still do not have any method of measuring the intensity of emotions or the
degree of consciousness a system has. There is no way of quantifying the agony inflicted by the death a
loved one. Or the amount of pleasure that comes with falling in love. In order to not only test a machine’s
intelligence but also whether it is capable of conscious experiences and feelings it is necessary to uncover the
mathematical structures behind these states and devise new types of measures. In fact, new institutions like
the Qualia Research Institute” or Cross Labs® aim to do exactly that.

Conclusion

In summary, the answer to the question Can computers think?” depends entirely on the definition of think-
ing”. Letting GPT-3 speak as representative for the Als:

Human: “From your own point of view, can computers think?”

GPT-3: “Any computer, given sufficient data, can come up with the right answer to any problem,”
Human: “That doesn’t tell me about whether or not they can think””

GPT-3: “It is no more possible to tell whether a computer can think without defining thinking”

Regardless of what these words mean, modern Machine Learning models can already convince humans of
their originality. Have you noticed, that the definition of Machine Learning in the section ”Artificial Intelli-
gence” was actually written by GPT-3? Can you spot other parts of this essay, which were not written by a
human?

The perceived gap between human and machine has never been smaller and will continue to vanish in the
next few years. People are already falling in love with their Als, sharing their deepest emotions and darkest
secrets. Therefore, regardless of how closely the minds of computers resemble those of humans - we surely
will not be able to tell the difference a few years from now. Or as Turing (1950, p.442) puts it:

*The original question, ’Can machines think?’, I believe to be too meaningless to deserve discussion. Never-
theless I believe that at the end of the century the use of words and general educated opinion will have altered
so much that one will be able to speak of machines thinking without expecting to be contradicted”

With this in mind, we need to develop new types of tests that measure not only intelligence but quantify
emotions and consciousness. It is time to shift the focus from Artificial Intelligence to Artificial Life.

Zhttps://www.qualiaresearchinstitute.org
3https://www.crosslabs.org
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